
ARCHIVE_UTIL(3) Library Functions Manual ARCHIVE_UTIL(3)

NAME

archive_clear_error, archive_compression, archive_compression_name, archive_copy_error, archive_errno,

archive_error_string, archive_file_count, archive_filter_code, archive_filter_count, archive_filter_name,

archive_format, archive_format_name, archive_position, archive_set_error — libarchive utility functions

LIBRARY

Streaming Archive Library (libarchive, -larchive)

SYNOPSIS

#include <archive.h>

void

archive_clear_error(struct archive ∗ );

int

archive_compression(struct archive ∗ );

const char ∗
archive_compression_name(struct archive ∗ );

void

archive_copy_error(struct archive ∗ , struct archive ∗ );

int

archive_errno(struct archive ∗ );

const char ∗
archive_error_string(struct archive ∗ );

int

archive_file_count(struct archive ∗ );

int

archive_filter_code(struct archive ∗ , int);

int

archive_filter_count(struct archive ∗ , int);

const char ∗
archive_filter_name(struct archive ∗ , int);

int

archive_format(struct archive ∗ );

const char ∗
archive_format_name(struct archive ∗ );

int64_t

archive_position(struct archive ∗ , int);

void

archive_set_error(struct archive ∗ , int error_code , const char ∗ fmt , ... );

DESCRIPTION

These functions provide access to various information about the struct archive object used in the

libarchive(3) library.

archive_clear_error()

Clears any error information left over from a previous call. Not generally used in client code.

archive_compression()

Synonym for archive_filter_code(a , 0).

archive_compression_name()

Synonym for archive_filter_name(a , 0).

Debian February 2, 2012 1



ARCHIVE_UTIL(3) Library Functions Manual ARCHIVE_UTIL(3)

archive_copy_error()

Copies error information from one archive to another.

archive_errno()

Returns a numeric error code (see errno(2)) indicating the reason for the most recent error return.

Note that this can not be reliably used to detect whether an error has occurred. It should be used

only after another libarchive function has returned an error status.

archive_error_string()

Returns a textual error message suitable for display. The error message here is usually more spe-

cific than that obtained from passing the result of archive_errno() to strerror(3).

archive_file_count()

Returns a count of the number of files processed by this archive object. The count is incremented

by calls to archive_write_header(3) or archive_read_next_header(3).

archive_filter_code()

Returns a numeric code identifying the indicated filter. See archive_filter_count() for

details of the numbering.

archive_filter_count()

Returns the number of filters in the current pipeline. For read archive handles, these filters are

added automatically by the automatic format detection. For write archive handles, these filters

are added by calls to the various archive_write_add_filter_XXX() functions. Filters in

the resulting pipeline are numbered so that filter 0 is the filter closest to the format handler. As a

convenience, functions that expect a filter number will accept -1 as a synonym for the highest-

numbered filter.

For example, when reading a uuencoded gzipped tar archive, there are three filters: filter 0 is the

gunzip filter, filter 1 is the uudecode filter, and filter 2 is the pseudo-filter that wraps the archive

read functions. In this case, requesting archive_position(a , -1) would be a synonym for

archive_position(a , 2) which would return the number of bytes currently read from the

archive, while archive_position(a , 1) would return the number of bytes after uudecoding,

and archive_position(a , 0) would return the number of bytes after decompression.

archive_filter_name()

Returns a textual name identifying the indicated filter. See archive_filter_count() for

details of the numbering.

archive_format()

Returns a numeric code indicating the format of the current archive entry. This value is set by a

successful call to archive_read_next_header(). Note that it is common for this value to

change from entry to entry. For example, a tar archive might have sev eral entries that utilize

GNU tar extensions and several entries that do not. These entries will have different format

codes.

archive_format_name()

A textual description of the format of the current entry.

archive_position()

Returns the number of bytes read from or written to the indicated filter. In particular,

archive_position(a , 0) returns the number of bytes read or written by the format handler,

while archive_position(a , -1) returns the number of bytes read or written to the archive.

See archive_filter_count() for details of the numbering here.

archive_set_error()

Sets the numeric error code and error description that will be returned by archive_errno()

and archive_error_string(). This function should be used within I/O callbacks to set

system-specific error codes and error descriptions. This function accepts a printf-like format

string and arguments. However, you should be careful to use only the following printf format

specifiers: “%c”, “%d”, “%jd”, “%jo”, “%ju”, “%jx”, “%ld”, “%lo”, “%lu”, “%lx”, “%o”, “%u”,

“%s”, “%x”, “%%”. Field-width specifiers and other printf features are not uniformly supported

and should not be used.

Debian February 2, 2012 2



ARCHIVE_UTIL(3) Library Functions Manual ARCHIVE_UTIL(3)

SEE ALSO

archive_read(3), archive_write(3), libarchive(3), printf(3)

HISTORY

The libarchive library first appeared in FreeBSD 5.3.

AUTHORS

The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

Debian February 2, 2012 3


