
LIBARCHIVE_INTERNALS(3) Library Functions Manual LIBARCHIVE_INTERNALS(3)

NAME

libarchive_internals — description of libarchive internal interfaces

OVERVIEW

The libarchive library provides a flexible interface for reading and writing streaming archive files such

as tar and cpio. Internally, it follows a modular layered design that should make it easy to add new archive

and compression formats.

GENERAL ARCHITECTURE

Externally, libarchive exposes most operations through an opaque, object-style interface. The

archive_entry(3) objects store information about a single filesystem object. The rest of the library provides

facilities to write archive_entry(3) objects to archive files, read them from archive files, and write them to

disk. (There are plans to add a facility to read archive_entry(3) objects from disk as well.)

The read and write APIs each have four layers: a public API layer, a format layer that understands the

archive file format, a compression layer, and an I/O layer. The I/O layer is completely exposed to clients

who can replace it entirely with their own functions.

In order to provide as much consistency as possible for clients, some public functions are virtualized.

Eventually, it should be possible for clients to open an archive or disk writer, and then use a single set of

code to select and write entries, regardless of the target.

READ ARCHITECTURE

From the outside, clients use the archive_read(3) API to manipulate an archive object to read entries and

bodies from an archive stream. Internally, the archive object is cast to an archive_read object,

which holds all read-specific data. The API has four layers: The lowest layer is the I/O layer. This layer

can be overridden by clients, but most clients use the packaged I/O callbacks provided, for example, by

archive_read_open_memory(3), and archive_read_open_fd(3). The compression layer calls the I/O layer to

read bytes and decompresses them for the format layer. The format layer unpacks a stream of uncom-

pressed bytes and creates archive_entry objects from the incoming data. The API layer tracks overall

state (for example, it prevents clients from reading data before reading a header) and invokes the format and

compression layer operations through registered function pointers. In particular, the API layer drives the

format-detection process: When opening the archive, it reads an initial block of data and offers it to each

registered compression handler. The one with the highest bid is initialized with the first block. Similarly,

the format handlers are polled to see which handler is the best for each archive. (Prior to 2.4.0, the format

bidders were invoked for each entry, but this design hindered error recovery.)

I/O Layer and Client Callbacks

The read API goes to some lengths to be nice to clients. As a result, there are few restrictions on the behav-

ior of the client callbacks.

The client read callback is expected to provide a block of data on each call. A zero-length return does indi-

cate end of file, but otherwise blocks may be as small as one byte or as large as the entire file. In particular,

blocks may be of different sizes.

The client skip callback returns the number of bytes actually skipped, which may be much smaller than the

skip requested. The only requirement is that the skip not be larger. In particular, clients are allowed to re-

turn zero for any skip that they don’t want to handle. The skip callback must never be inv oked with a nega-

tive value.

Keep in mind that not all clients are reading from disk: clients reading from networks may provide differ-

ent-sized blocks on every request and cannot skip at all; advanced clients may use mmap(2) to read the en-

tire file into memory at once and return the entire file to libarchive as a single block; other clients may be-

gin asynchronous I/O operations for the next block on each request.

Decompression Layer

The decompression layer not only handles decompression, it also buffers data so that the format handlers

see a much nicer I/O model. The decompression API is a two stage peek/consume model. A read_ahead

request specifies a minimum read amount; the decompression layer must provide a pointer to at least that

much data. If more data is immediately available, it should return more: the format layer handles bulk data

Debian January 26, 2011 1



LIBARCHIVE_INTERNALS(3) Library Functions Manual LIBARCHIVE_INTERNALS(3)

reads by asking for a minimum of one byte and then copying as much data as is available.

A subsequent call to the consume() function advances the read pointer. Note that data returned from a

read_ahead() call is guaranteed to remain in place until the next call to read_ahead(). Intervening

calls to consume() should not cause the data to move.

Skip requests must always be handled exactly. Decompression handlers that cannot seek forward should

not register a skip handler; the API layer fills in a generic skip handler that reads and discards data.

A decompression handler has a specific lifecycle:

Registration/Configuration

When the client invokes the public support function, the decompression handler invokes the inter-

nal __archive_read_register_compression() function to provide bid and initializa-

tion functions. This function returns NULL on error or else a pointer to a struct

decompressor_t. This structure contains a void ∗ config slot that can be used for storing any

customization information.

Bid The bid function is invoked with a pointer and size of a block of data. The decompressor can ac-

cess its config data through the decompressor element of the archive_read object. The bid

function is otherwise stateless. In particular, it must not perform any I/O operations.

The value returned by the bid function indicates its suitability for handling this data stream. A

bid of zero will ensure that this decompressor is never inv oked. Return zero if magic number

checks fail. Otherwise, your initial implementation should return the number of bits actually

checked. For example, if you verify two full bytes and three bits of another byte, bid 19. Note

that the initial block may be very short; be careful to only inspect the data you are given. (The

current decompressors require two bytes for correct bidding.)

Initialize The winning bidder will have its init function called. This function should initialize the remain-

ing slots of the struct decompressor_t object pointed to by the decompressor element of the

archive_read object. In particular, it should allocate any working data it needs in the data slot of

that structure. The init function is called with the block of data that was used for tasting. At this

point, the decompressor is responsible for all I/O requests to the client callbacks. The decom-

pressor is free to read more data as and when necessary.

Satisfy I/O requests

The format handler will invoke the read_ahead, consume, and skip functions as needed.

Finish The finish method is called only once when the archive is closed. It should release anything

stored in the data and config slots of the decompressor object. It should not invoke the client

close callback.

Format Layer

The read formats have a similar lifecycle to the decompression handlers:

Registration

Allocate your private data and initialize your pointers.

Bid Formats bid by invoking the read_ahead() decompression method but not calling the

consume() method. This allows each bidder to look ahead in the input stream. Bidders should

not look further ahead than necessary, as long look aheads put pressure on the decompression

layer to buffer lots of data. Most formats only require a few hundred bytes of look ahead; look

aheads of a few kilobytes are reasonable. (The ISO9660 reader sometimes looks ahead by 48k,

which should be considered an upper limit.)

Read header

The header read is usually the most complex part of any format. There are a few strategies worth

mentioning: For formats such as tar or cpio, reading and parsing the header is straightforward

since headers alternate with data. For formats that store all header data at the beginning of the

file, the first header read request may have to read all headers into memory and store that data,

sorted by the location of the file data. Subsequent header read requests will skip forward to the

beginning of the file data and return the corresponding header.

Debian January 26, 2011 2



LIBARCHIVE_INTERNALS(3) Library Functions Manual LIBARCHIVE_INTERNALS(3)

Read Data

The read data interface supports sparse files; this requires that each call return a block of data

specifying the file offset and size. This may require you to carefully track the location so that

you can return accurate file offsets for each read. Remember that the decompressor will return as

much data as it has. Generally, you will want to request one byte, examine the return value to see

how much data is available, and possibly trim that to the amount you can use. You should invoke

consume for each block just before you return it.

Skip All Data

The skip data call should skip over all file data and trailing padding. This is called automatically

by the API layer just before each header read. It is also called in response to the client calling the

public data_skip() function.

Cleanup On cleanup, the format should release all of its allocated memory.

API Layer

XXX to do XXX

WRITE ARCHITECTURE

The write API has a similar set of four layers: an API layer, a format layer, a compression layer, and an I/O

layer. The registration here is much simpler because only one format and one compression can be regis-

tered at a time.

I/O Layer and Client Callbacks

XXX To be written XXX

Compression Layer

XXX To be written XXX

Format Layer

XXX To be written XXX

API Layer

XXX To be written XXX

WRITE_DISK ARCHITECTURE

The write_disk API is intended to look just like the write API to clients. Since it does not handle multiple

formats or compression, it is not layered internally.

GENERAL SERVICES

The archive_read, archive_write, and archive_write_disk objects all contain an initial

archive object which provides common support for a set of standard services. (Recall that ANSI/ISO

C90 guarantees that you can cast freely between a pointer to a structure and a pointer to the first element of

that structure.) The archive object has a magic value that indicates which API this object is associated

with, slots for storing error information, and function pointers for virtualized API functions.

MISCELLANEOUS NOTES

Connecting existing archiving libraries into libarchive is generally quite difficult. In particular, many exist-

ing libraries strongly assume that you are reading from a file; they seek forwards and backwards as neces-

sary to locate various pieces of information. In contrast, libarchive nev er seeks backwards in its input,

which sometimes requires very different approaches.

For example, libarchive’s ISO9660 support operates very differently from most ISO9660 readers. The

libarchive support utilizes a work-queue design that keeps a list of known entries sorted by their location in

the input. Whenever libarchive’s ISO9660 implementation is asked for the next header, checks this list to

find the next item on the disk. Directories are parsed when they are encountered and new items are added

to the list. This design relies heavily on the ISO9660 image being optimized so that directories always oc-

cur earlier on the disk than the files they describe.

Depending on the specific format, such approaches may not be possible. The ZIP format specification, for

example, allows archivers to store key information only at the end of the file. In theory, it is possible to cre-

ate ZIP archives that cannot be read without seeking. Fortunately, such archives are very rare, and

libarchive can read most ZIP archives, though it cannot always extract as much information as a dedicated

Debian January 26, 2011 3



LIBARCHIVE_INTERNALS(3) Library Functions Manual LIBARCHIVE_INTERNALS(3)

ZIP program.

SEE ALSO

archive_entry(3), archive_read(3), archive_write(3), archive_write_disk(3), libarchive(3)

HISTORY

The libarchive library first appeared in FreeBSD 5.3.

AUTHORS

The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

Debian January 26, 2011 4


