etcd

Security Assessment
February 7, 2020

Prepared For:
Xiang Li | etcd
xiangli.cs@gmail.com

Chris Aniszczyk | Linux Foundation
caniszczyk@linuxfoundation.org

Prepared By:
Robert Tonic | Trail of Bits
robert.tonic@trailofbits.com

Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Sai Vegasena | Trail of Bits
sai.vegasena@trailofbits.com

Kristin Mayo | Trail of Bits
kristin.mayo®@trailofbits.com

Change Log:

April 14, 2020: Corrected typo in finding difficulties.
May 11, 2020: Corrected severity inconsistency.
July 22, 2020: Added Appendix D: Gateway Finding Remediations.

August 04, 2020: Updated executive summary to highlight Appendix D.

mailto:xiangli.cs@gmail.com
mailto:caniszczyk@linuxfoundation.org
mailto:robert.tonic@trailofbits.com
mailto:dominik.czarnota@trailofbits.com
mailto:sai.veganesa@trailofbits.com
mailto:kristin.mayo@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term

Long Term

Findings Summary
1. Gateway TLS endpoint validation only confirms TCP reachability
. The gateway can include itself as an endpoint, resulting in resource exhaustion
. Directories created via 0s.MkdirAll are not checked for permissions
. Gateway TLS authentication only applies to endpoints detected in DNS SRV records
. TOCTOU of gateway endpoint authentication
. An entry with large index causes panic in WAL.ReadAll method
. A large slice causes panic in decodeRecord method
. No minimum password length
9. Inaccurate logging of authentication attempts for users with CN-based auth only
10. The “Total number of db keys compacted” metric is never changed

11. Auto compaction retention can be set to negative value causing a compaction loop
or a crash

00 |N O U | [WN

12. User credentials are stored in WAL logs in plaintext
13. Null pointer exception when calling wal.ReadAll after wal.Create

14. Submitting a -1 for cluster node size results in an index out-of-bound panic during
service discovery

15. Insecure ciphers are allowed by default
16. etcd is insecure by default
17. Use of TLS InsecureSkipVerify

A. Vulnerability Classifications

B. Code Quality Recommendations

C. Fuzzing results
etcd wal package

D. Gateway Finding Remediations

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 1

Executive Summary

From January 21 through January 31, 2020, the Linux Foundation engaged Trail of Bits to
review the security of etcd. Trail of Bits conducted this assessment over the course of four
person-weeks with four engineers working from release 3.4.3 of the etcd-io/etcd
repository.

In the first week of the assessment, Trail of Bits set up local environments for building and
testing the etcd system. During this time, we performed a mixture of manual and
automated review. Automated review consisted of running various static analysis tools,
such as errcheck, ineffassign, and go-sec. Results were subsequently reviewed and
triaged as necessary. Manual review focused on gaining familiarity with the implementation
details of etcd, such as configuration options, default settings, service discovery, RAFT
consensus, and leader election.

During the second week, we continued our manual review with the same targets, plus
coverage of the etcd proxy and gateway. We also began instrumenting custom tooling. On
the automated side, google/gofuzz and dvyukov/go-fuzz testing harnesses were
developed to test the WAL file implementation (see Appendix C. Fuzzing results).

Our assessment revealed a total of 17 findings ranging from high- to informational-severity.
Overall, the etcd codebase represents a mature and heavily adopted product. However,
there are many edge-cases not caught by the current test suite, and there are areas where
the expected functionality of etcd does not match its implementation. These gaps can
affect the security posture of the system since etcd gateway users may make inaccurate
assumptions.

Examples: TOB-ETCD-001: Gateway TLS endpoint validation only confirms TCP reachability,
or TOB-ETCD-004: Gateway TLS endpoint validation only applies to endpoints detected in
DNS SRV records. Another example can be seen in the WAL implementation, where each
WAL entry has semi-trusted metadata, resulting in a potential crash of quorum instances if
a malicious leader propagates malicious entries. See further details in TOB-ETCD-006: An
entry with large index causes panic in WAL.ReadAll method.

To improve the security posture of etcd, Trail of Bits recommends first addressing the
findings in this report, prioritizing short-term recommendations, and integrating long-term
recommendations into future releases. Once fixes are applied and recommendations
addressed, a future assessment should be performed to ensure the fixes are adequate and
do not introduce additional security risks.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 2

https://github.com/etcd-io/etcd
https://github.com/kisielk/errcheck
https://github.com/gordonklaus/ineffassign
https://github.com/securego/gosec
https://github.com/google/gofuzz
https://github.com/dvyukov/go-fuzz

After the assessment was completed, the Etcd team followed-up with the assessment team
to review findings related to the gateway. Further details about how they were addressed
were included in Appendix D.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 3

Project Dashboard

Application Summary

Name Etcd

Version Release 3.4.3
Type Datastore
Platforms Go

Engagement Summary

Dates January 11-21, 2020
Method Whitebox
Consultants Engaged 2

Level of Effort

4 person-weeks

Vulnerability Summary

Total High-Severity Issues 1]
Total Medium-Severity Issues 6 EEEEEE
Total Low-Severity Issues 6 EEEEEE
Total Informational-Severity Issues 4 EEEN
Total [17
Category Breakdown
Data Validation 5 EEEEE
Access Controls 2 mm
Cryptography 4 |mmmm
Logging 2 mm
Authentication 1]
Data Exposure 1 (]
Denial of Service 1]
Configuration 1]
Total [17

© 2020 Trail of Bits

Linux Foundation Etcd Assessment | 4

Engagement Goals

The engagement was scoped to provide a security assessment of etcd as a whole.
Specifically, we sought to answer the following questions:

Is there any way an attacker could impede service discovery?

Is there any way a malicious etcd leader could impact its peers?

Are the filesystem permissions used by etcd secure?

Are there any major problems with the use of cryptography in etcd?

Are there any correctness issues in error-handling within etcd?

Does etcd provide the necessary logging for sensitive operations?

Are there any major concerns with the use of the gateway and proxy functionality of
etcd?

Coverage

Authentication and authorization. The methods used to authenticate and authorize
clients with etcd were reviewed, including the TLS authentication assumptions of the
ancillary proxies and gateways.

Filesystem permissions. We reviewed assumptions around file and directory permissions,
focusing on enforcement and validation of permissions, including the impact of package
implementation semantics on these validations.

Cryptography. We reviewed TLS authentication methods and assumptions, focusing on
client-facing communications.

Default settings. The defaults used by etcd were reviewed for their impact on the system’s
security posture.

Data validation. We reviewed data validation throughout the system, focusing on areas
where data from external sources is retrieved and subsequently parsed, such as service
discovery and RAFT operations.

Error-handling. Error-handling was reviewed to identify areas where etcd could fail in an
unexpected way, or otherwise operate in an unintended fashion. Additional focus was
placed on packages used in critical locations which may be modified later, such as packages
assisting in WAL file operations.

Logging. We reviewed logging, focusing on correctness of reporting and ability to log and
implement alerting on security-critical events such as authentication.

Service discovery. Our review of service discovery operations focused on problems that

could prevent peers from successfully completing discovery, or could otherwise impact the
stability of discovered peers.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 5

WAL operations. The package used to interact with WAL files was reviewed for problems
that could lead to the destabilization of RAFT operations, or any of the peers attempting to
form consensus.

Gateway and proxy. The gateway and proxy functionalities of etcd were reviewed to
ensure operations such as TLS connection handling and load balancing were correct. We
focused primarily on issues such as resource exhaustion, authentication, and TOCTOU.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 6

Recommendations Summary

This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term

When the trusted CA flag is provided to the etcd gateway, ensure dialing uses a TLS
connection instead of a TCP connection. This will ensure all connections from gateway to
endpoint are appropriately authenticated. TOB-ETCD-001

The gateway should filter endpoints to exclude those that resolve to the listening
address of the gateway. This will help ensure circular references are more difficult to
configure by users. TOB-ETCD-002

When using utilities such as os.MkdirAll, check all directories in the path and
validate their owner and permissions before performing operations on those that
already exist. This will help avoid situations in which sensitive information is written to a
pre-existing attacker-controlled path. TOB-ETCD-003

Ensure TLS authentication is applied to endpoints provided in the --endpoints flag on
the etcd gateway. This will ensure consistent functionality across both endpoint discovery
methods. TOB-ETCD-004

Authenticate each endpoint using the provided CA certificate upon each connection
established by the etcd gateway. This will help prevent any endpoint that's only been
authenticated once from being trusted. TOB-ETCD-005

Ensure proper size checks on the final e.Index-w.start.Index-1in each WAL entry,
and gracefully error if the size is too large for the given slice. This will avoid a hard
crash if an invalid WAL entry is encountered. TOB-ETCD-006

Provide a size check on the decodeRecord method and gracefully exit if the frame size
is larger than the maximum slice length. This will prevent crashing due to out-of-bounds
indexing of the allocated array if the WAL entry has been mutated. TOB-ETCD-007

Consider improving the password requirements to a higher minimum character
amount. This will make it harder for an attacker to brute-force authentication of an etcd
user. TOB-ETCD-008

Ensure an appropriate error is logged when an authentication attempt has failed due
to a client certificate authentication. Ideally, each authentication method should
generate unique log entries to allow operators to differentiate interactions. TOB-ETCD-009

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 7

Ensure the dbCompactionKeysCounter variable properly represents the etcd
operations that have occurred. This will help ensure users can properly track and alert
on metrics. TOB-ETCD-010

Do not accept a negative value of automatic compaction retention. Data validation
should ensure the provided values are within the expected range. TOB-ETCD-011

Do not store credentials in the WAL. Instead, consider having a centralized location for
credentials that can be hardened appropriately, limiting the attack surface for sensitive
information. TOB-ETCD-012

Initialize a decoder in the wal.Create function, so the WAL* may decode information
in the wal.ReadAll function. This will prevent users from encountering an error due to an
uninitialized decoder. TOB-ETCD-013

Ensure proper validation for all values retrieved and parsed from outside sources.
This will help reduce the effect of a third-party system compromise on the integrity of etcd.
TOB-ETCD-014

Disable weak ciphers and require a special flag to enable them. By default, only enable
the modern ciphers as recommended by the Mozilla Security/Server side document.
TOB-ETCD-015

Deprecate the insecure defaults and promote more secure usage of etcd. For
example, list all insecure options at once during startup, describing the problems and
suggesting fixes, and linking to a documentation page that would show how to set up etcd
securely. TOB-ETCD-016

Review configurations that use InsecureSkipVerify. Use insecure TLS selectively and
with caution. There are few purposes for which unverified certificates should be supported.
TOB-ETCD-017

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 8

https://wiki.mozilla.org/Security/Server_Side_TLS

Long Term

Ensure all dialers are using the appropriate features for their expected protocols.
Consider indexing the supported protocols—where they are used and how they are
enforced—in a centralized fashion. TOB-ETCD-001

Ensure error values are appropriately reported instead of silently failing. Consider
implementing a generic graceful exit routine. TOB-ETCD-002

Enumerate files and directories for their expected permissions overall, and build
validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the
application as a whole. TOB-ETCD-003

Ensure TLS connections are always used for gateway endpoints where the protocol
schema is HTTPS. This will force a fast failure for an endpoint that cannot successfully
authenticate with the gateway, and ensure the client only connects to an authenticated
backend. TOB-ETCD-004

Consider implementing periodic endpoint validation to ensure all specified endpoints
are not only reachable, but also authenticated. This will allow proactive detection of
unhealthy endpoints, as well as those no longer able to successfully authenticate with the
given configuration. TOB-ETCD-005

Restructure WALs to be limited by entry index and size instead of just size. This will
help prevent mutated entries from inducing a panic when parsing the WAL. TOB-ETCD-006

Consider building a method to identify expected ranges for valid values into the
format for the WAL. This will assist in additional validations of the WAL file, allowing the
detection of corruption or manipulation. TOB-ETCD-007

Consider adopting a specific standard for password requirements, such as NIST SP
800-204, and enforce it across the codebase. TOB-ETCD-008

Validate whether all significant program paths are logged distinguishably and
documented appropriately. This will help ensure proper logging and detections can be
built on each authentication method. TOB-ETCD-009

Expand unit tests to include testing metrics endpoints to ensure changes to the
metrics endpoints still produce the expected behavior. This will prevent future
introduction of breaking changes and ensure the stability of loggable metrics.
TOB-ETCD-010

Account for negative values provided as the auto compaction value. This should also
be tested within the corresponding TestAutoCompactionModeParse test. TOB-ETCD-011

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 9

Check if file permissions used by etcd are within an acceptable range. If the
permissions are too broad, etcd should exit with an error for further investigation.
TOB-ETCD-012

Add validation before the decoder is accessed in WAL functions. If the decoder is not
initialized, error out or initialize appropriately. TOB-ETCD-013

Consider consolidating validation routines into a specific set of helper libraries used
across the codebase. Avoid using strconv.Atoi without validating the parsed value.
TOB-ETCD-014

Determine the most popular ciphers used by etcd clients and consider removing
weak ciphers from support. This will help prevent clients from accidentally configuring an
insecure cipher when using etcd. TOB-ETCD-015

Make etcd secure by default, by requiring a minimally secure launch configuration.
To ease development, testing, and debugging, consider providing a simpler, but less secure
configuration under --insecure. TOB-ETCD-016

Avoid use of insecure TLS configurations altogether. Verify certificates in all scenarios
by default. TOB-ETCD-017

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 10

Findings Summary

| Title Type Severity

1 | Gateway TLS endpoint validation only Cryptography | Medium
confirms TCP reachability

2 | The gateway can include itself as an Denial of High
endpoint, resulting in resource Service
exhaustion

3 Directories created via os.MkdirAll are not | Access Controls | Medium
checked for permissions

4 | Gateway TLS authentication only applies | Cryptography | Medium
to endpoints detected in DNS SRV records

5 | TOCTOU of gateway endpoint Authentication | Low
authentication

6 | An entry with large index causes panic in Data Validation | Medium
WAL.ReadAll method

7 | Alarge slice causes panicin Data Validation | Medium
decodeRecord method

8 No minimum password length Access Controls | Medium

9 [Inaccurate logging of authentication Logging Low
attempts for users with CN-based auth
only

10 | The "Total number of db keys compacted” | Logging Informational
metric is never changed

11 | Auto compaction retention can be set to Data Validation | Low
negative value causing a compaction loop
or a crash

12 | User credentials are stored in WAL logs in | Data Exposure | Low

plaintext

© 2020 Trail of Bits

Linux Foundation Etcd Assessment | 11

13 | Null pointer exception when calling Data Validation | Informational
wal.Readall after wal.Create
14 | Submitting a -1 for cluster node size Data Validation | Low
results in an index out-of-bound panic
during service discovery
15 | Insecure ciphers are enabled by default Cryptography | Low
16 | etcd is insecure by default Configuration Informational
17 | Use of TLS InsecureSkipVerify Cryptography Informational

© 2020 Trail of Bits

Linux Foundation Etcd Assessment | 12

1. Gateway TLS endpoint validation only confirms TCP reachability

Severity: Medium Difficulty: Low
Type: Cryptography Finding ID: TOB-ETCD-001
Target: pkg/transport/tls.go, etcdmain/util.go

Description

Secure endpoint validation is performed by the etcd gateway start command when the
--discovery-srv flag is enabled. However, as currently implemented, it only validates TCP
reachability, effectively allowing connections to an endpoint that doesn't accept TLS
connections through the HTTPS URL.

The transport.ValidateSecureEndpoints function (Figure TOB-ETCD-001.1) is used to
perform validation of formatted HTTPS endpoints within the etcdmain.discoverEndpoints
function (Figure TOB-ETCD-001.2) used by both etcdmain.mustNewClient and
etcdmain.startGateway.

The validation works in two steps. First, if the endpoint does not start with HTTPS, the
endpoint is not considered secure. Second, if the address is unreachable (with HTTPS
stripped from the beginning), it is considered insecure. Because of these two steps, if you
prepend HTTPS to any address listening for TCP (but not TLS) connections, validation will
succeed. The provided certificate file and server name are ignored when performing the
Dial operation because the net.Dial function does not initiate a TLS handshake—it only
establishes a TCP connection to the endpoint.

The proof of concept in Figure TOB-ETCD-001.3 is an extracted example of how
transport.ValidateSecureEndpoints is used within the etcdmain.discoverEndpoints
function. The certificate authority (CA) certificate used in the proof of concept can also be
seen in Figure TOB-ETCD-001.4. Figures TOB-ETCD-001.5-6 show a Python simple HTTP
server (not using TLS) and the output of the proof of concept (PoC). As the PoC output
shows, it successfully validated the HTTPS-formatted URL to the simple HTTP server, and to
Google's HTTP endpoint.

// ValidateSecureEndpoints scans the given endpoints against tls info, returning only those
// endpoints that could be validated as secure.
func ValidateSecureEndpoints(tlsInfo TLSInfo, eps []string) ([]string, error) {
t, err := NewTransport(tlsInfo, 5*time.Second)
if err I= nil {
return nil, err
}
var errs []string
var endpoints []string
for _, ep := range eps {
if Istrings.HasPrefix(ep, "https://") {
errs = append(errs, fmt.Sprintf("%q is insecure", ep))
continue

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 13

}

conn, cerr := t.Dial("tcp", ep[len("https://"):1)

if cerr != nil {
errs = append(errs, fmt.Sprintf("%q failed to dial (%v)", ep, cerr))
continue

conn.Close()
endpoints = append(endpoints, ep)

if len(errs) != 0 {
err = fmt.Errorf("%s", strings.Join(errs, ","))

}

return endpoints, err

Figure TOB-ETCD-001.1: The ValidateSecureEndpoints function definition
(pkg/transport/tls.go#lL23-149).

// confirm TLS connections are good

tlsInfo := transport.TLSInfo{
TrustedCAFile: ca,
ServerName: dns,

if 1g 1= nil {
lg.Info(
"validating discovered SRV endpoints”,
zap.String("srv-server", dns),
zap.Strings("endpoints”, endpoints),
)
} else {
plog.Infof("validating discovered endpoints %v", endpoints)

}

endpoints, err = transport.ValidateSecureEndpoints(tlsInfo, endpoints)

Figure TOB-ETCD-001.2: The snippet of discoverEndpoints where ValidateSecureEndpoints
is used (etcdmain/util.go#L51-167).

package main

"go.etcd.io/etcd/pkg/transport”
)

func main() {
// Amazon CA

ca := "./ca.crt"
dns := “amazon.com’
res, err := transport.ValidateSecureEndpoints(

transport.TLSInfo{

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 14

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/pkg/transport/tls.go#L23-L49
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdmain/util.go#L51-L67

TrustedCAFile: ca,
ServerName: dns,

¥
[1string{"http://0.0.0.0:8000", "https://0.0.0.0:8000",
"http://www.google.com:80", "https://www.google.com:80"})

// Print the output
fmt.Println(res, err)

}

Figure TOB-ETCD-001.3: A proof of concept showing the failure to validate an endpoint as using
HTTPS.

MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkqhkiGOwOBAQsSF
ADA5MQswCQYDVQQGEwJIVUzEPMAGGALUEChMGQW1hem9uMRkwFwYDVQQDEXBBbWF6
b24gUm9vdCBDQSAXMBAXDTE1MDUYNjAWMDAWMFoXDTMAMDEXNzAwWMDAWMFowOTEL
MAKGA1UEBhMCVVMxDzANBgNVBAOTBkFtYXpvbjEZMBCcGALUEAXMQQW1hemOuIFJv
b3QgQOEgMTCCASIWDQYJIKoZIhvcNAQEBBQADggEPADCCAQoCggEBAL J4gHHKeNXj
Cca9HgFBOTW7Y14h2931091ghYP1OhAEVrAItht0gQ3p0sqTQNroBvo3bSMgHFzZM
906118c+6zf1tRn4SWiw3te5djgdYZ6k/0I2peVKVURF4fn9tBb6dNqcmzUSL/qw
IFAGbHrQgLKm+a/sRxmPUDgH3KKHOVj4utWp+UhnMIbulHheb4dmjUcAwhmahRWa6
VOujw5H5SNz /@egwlLX0tdHA114gk957EWW67c4cX8jIGKLhD+rcdqsq@8p8kDillL
93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GfID5yHI9Y/QCB/IIDEgEW+0yQm
jgSubJrIqg@CAWEAAANCMEAWDWYDVROTAQH/BAUWAWEB/zAOBgNVHQ8BATF8EBAMC
AYYwHQYDVROOBBYEFIQYzIUO7LwWM1IQUCFmcx7IQTgoIMARGCSqGSIb3DQEBCWUA
A4IBAQCY83jdaQzChGsV2USggNiMOruYoubr4lK5IpDB/G/wkjUu@yKGX9rbxenDI
USPMCCjjmCXPI6T53iHTfIUIrU6adTrCC2qJeHZERXh1bI1Bjjt/msvOtadQlwUs
N+gDS63pYaACbvXy8MWy7Vu33PqUXHeeE6V/Uq2V8viTO96LXFVKW1IbYK8U90VV
0/ufQIVtMVT8QtPHRh8jrdkPSHCa2XV4cdFyQzR1bldZwglcImApzyMZFo6IQ6XU
5MsI+yMRQ+hDKXJioaldXgjUkK642MAUwtBV8ob2xINDd2ZhwLnoQdeXeGADbkpy
rgXRfboQnozZsG4q5WTP468SQvvG5

————— END CERTIFICATE-----

Figure TOB-ETCD-001.4: An arbitrary Amazon CA certificate.

$ python3 -m http.server
Serving HTTP on ©0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Figure TOB-ETCD-001.3: A basic HTTP server.

$ go run main.go
[https://0.0.0.0:8000 https://www.google.com:80] "http://0.0.0.0:8000" is
insecure, "http://www.google.com:80" is insecure

Figure TOB-ETCD-001.5: The proof of concept output from Figure TOB-ETCD-001.1.

Exploit Scenario
An etcd endpoint is misconfigured without client TLS authentication behind a gateway.

Because the gateway fails to properly perform TLS authentication, the server is added as a
valid endpoint, and a client connects without TLS authentication. The gateway selects the
client-TLS-disabled endpoint, and client data is transmitted in the clear.

Recommendation

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 15

Short term, when the trusted CA flag is provided to the etcd gateway, ensure dialing uses a
TLS connection instead of a TCP connection. This will ensure all connections from gateway
to endpoint are appropriately authenticated.

Long term, ensure all dialers are using the appropriate features for their expected

protocols. Consider indexing the supported protocols—where they are used and how they
are enforced—in a centralized fashion.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 16

2. The gateway can include itself as an endpoint, resulting in resource
exhaustion

Severity: High Difficulty: High
Type: Denial of Service Finding ID: TOB-ETCD-002

Target: etcdmain/gateway.go

Description

The etcd gateway is a simple TCP proxy to allow for basic service discovery and access.
However, it is possible to include the gateway address as an endpoint. This results in a
denial of service, since the endpoint can become stuck in a loop of requesting itself until
there are no more available file descriptors to accept connections on the gateway.

./etcd gateway start --endpoints=http://127.0.0.1:23790

Figure TOB-ETCD-002.1: Starting the gateway with the endpoints flag including the gateway
address and port.

{"level":"info","ts":1579890333.565956, "caller":"tcpproxy/userspace.go:90",
"msg":"ready to proxy client requests","endpoints":["127.0.0.1:23790"]}
accept tcp 127.0.0.1:23790: accept: too many open files

Figure TOB-ETCD-002.2: The error message when the etcd gateway crashes (recovered through a
basic fmt.Printf instruction at the point of error, due to error-logging not capturing the error).

Exploit Scenario
An attacker compromises the DNS server used to return SRV records for an etcd gateway.

The attacker configures the DNS server to return the address of each gateway, causing the
gateways to connect to themselves and exhaust file descriptor resources.

Recommendation
Short term, the gateway should filter endpoints to exclude those that resolve to the

listening address of the gateway. This will help ensure circular references are more difficult
for users to configure.

Long term, ensure error values are appropriately reported instead of silently failing.
Consider implementing a generic graceful exit routine.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 17

3. Directories created via os.MkdirAll are not checked for permissions

Severity: Medium Difficulty: High
Type: Access Controls Finding ID: TOB-ETCD-003
Target: Multiple locations

Description

etcd creates certain directory paths with restricted access permissions (0700) by using the
os.MkdirAll. This function does not perform any permission checks when a given
directory path exists already. Then an attacker can create a directory used by etcd with
broad permissions before etcd attempts the same, which allows the attacker to read
sensitive data produced by etcd’s operations.

This happens in the following places:

e Inthe TouchDirAll utility function, which also checks if the end directory is writable
(Figure TOB-ETCD-003.1). However, if a user controls the directory, they might
change its permission after TouchDirAll checks it. This function is used for actions
such as snapshot and WAL directories creation.

e Inthe SelfCert function (Figure TOB-ETCD-003.2) used for clientCerts directory
creation.

e Inthe startProxy function (Figure TOB-ETCD-003.3) for proxy directory creation.

func TouchDirAll(dir string) error {

// If path is already a directory, MkdirAll does nothing

// and returns nil.

err := 0s.MkdirAll(dir, PrivateDirMode)

if err I= nil {
// if mkdirAll("a/text") and "text" is not
// a directory, this will return syscall.ENOTDIR
return err

}

return IsDirWriteable(dir)

Figure TOB-ETCD-003.1: The TouchDirAll function definition
(pkg/fileutil/fileutil.go#L48-158).

func SelfCert(lg *zap.Logger, dirpath string, hosts []string, additionalUsages
...X509.ExtKeyUsage) (info TLSInfo, err error) {
if err = os.MkdirAll(dirpath, 0700); err != nil {
return
}

info.Logger = 1g

certPath := filepath.Join(dirpath, "cert.pem")
keyPath := filepath.Join(dirpath, "key.pem")
// (...) - rest of the code
Figure TOB-ETCD-003.2: The SelfCert function definition
(pkg/transport/listener.go#L115-1123).

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 18

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/pkg/fileutil/fileutil.go#L48-L58
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/pkg/transport/listener.go#L115-L123

cfg.ec.Dir = filepath.Join(cfg.ec.Dir, "proxy")
err = 0s.MkdirAll(cfg.ec.Dir, fileutil.PrivateDirMode)
if err I= nil {

return err

}

var peerURLs []string
clusterfile := filepath.Join(cfg.ec.Dir, "cluster")

b, err := ioutil.ReadFile(clusterfile)

Figure TOB-ETCD-003.3: The startProxy function definition (etcdmain/etcd.go#L360-L369).

Exploit Scenario

Eve has unprivileged access to Alice's server, where an etcd server will be deployed or
updated to a new version that introduces new directories/paths. Eve knows that etcd will
use certain directory paths, so they create them with 8777 permissions. This allows Eve to
prevent etcd from running correctly or (in some cases) make etcd leak sensitive
information.

Recommendation

Short term, when using utilities such as os.MkdirAll, check all directories in the path and
validate their owner and permissions before performing operations on them. This will help
avoid situations where sensitive information is written to a pre-existing attacker-controlled

path.

Long term, enumerate files and directories for their expected permissions overall, and
build validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the application
as awhole.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 19

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdmain/etcd.go#L360-L369

4. Gateway TLS authentication only applies to endpoints detected in DNS
SRV records

Severity: Medium Difficulty: Low
Type: Cryptography Finding ID: TOB-ETCD-004
Target: etcdmain/gateway.go

Description

When starting a gateway, TLS authentication will only be attempted on endpoints identified
in DNS SRV records for a given domain, which occurs in the discoverEndpoints function.
No authentication is performed against endpoints provided in the --endpoints flag.

srvs := discoverEndpoints(lg, gatewayDNSCluster, gatewayCA, gatewayInsecureDiscovery,
gatewayDNSClusterServiceName)
if len(srvs.Endpoints) == 0 {
// no endpoints discovered, fall back to provided endpoints
srvs.Endpoints = gatewayEndpoints

Figure TOB-ETCD-004.1: A snippet of the startGateway function definition
(etcdmain/gateway.go#1102-1106).

Exploit Scenario

The etcd gateway is configured with HTTPS-formatted endpoints. However, no
authentication of these endpoints is performed using the certificate provided by the
certificate authority; thus, TLS is not properly enforced.

Recommendation

Short term, ensure TLS authentication is applied to endpoints provided in the --endpoints
flag on the etcd gateway. This will ensure consistent functionality across both endpoint
discovery methods.

Long term, ensure TLS connections are always used for gateway endpoints where the
protocol schema is HTTPS. This will force a fast failure for an endpoint that cannot
successfully authenticate with the gateway, and ensure the client only connects to an
authenticated backend.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 20

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdmain/gateway.go#L102-L106

5. TOCTOU of gateway endpoint authentication

Severity: Low Difficulty: Low
Type: Authentication Finding ID: TOB-ETCD-005
Target: etcdmain/gateway.go

Description

The gateway only authenticates endpoints detected from DNS SRV records as documented
in TOB-ETCD-004: Gateway TLS authentication only applies to endpoints detected in DNS
SRV records, and it only authenticates the detected endpoints once. Therefore, if an
endpoint changes its authentication settings, the gateway will continue to assume the
endpoint is still authenticated.

Exploit Scenario

An attacker compromises an etcd gateway endpoint and subsequently modifies the
authentication settings. Because the gateway does not enforce authentication upon each
attempted connection, a misconfigured client may connect to the unauthenticated
endpoint and request attacker-controlled values.

Recommendation

Short term, authenticate each endpoint using the provided CA certificate upon each
connection established by the etcd gateway. This will help prevent any endpoint that's only
been authenticated once from being trusted.

Long term, consider implementing periodic endpoint validation to ensure all specified
endpoints are not only reachable, but also authenticated. This will allow proactive detection
of unhealthy endpoints, as well as those no longer able to successfully authenticate with
the given configuration.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 21

6. An entry with large index causes panicin WAL.ReadAll method

Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-ETCD-006
Target: wal/wal.go

Description

After a record’s data is successfully unmarshalled, it is possible to have an entry index,
e.index, greater then the number of entries in ents. Furthermore, e.index could be
math.MaxInt64 while w.start.index could be @. This could cause issues when WAL entries
are being read during consensus as an arbitrary etcd consensus participant could go down
from a runtime panic when reading the entry.

func (w *WAL) ReadAll() (metadata []byte, state raftpb.HardState, ents []raftpb.Entry, err
error) {

w.mu.Lock()

defer w.mu.Unlock()

rec := &walpb.Record{}
decoder := w.decoder

var match bool
for err = decoder.decode(rec); err == nil; err = decoder.decode(rec) {
switch rec.Type {
case entryType:
e := mustUnmarshalEntry(rec.Data)
if e.Index > w.start.Index {
ents = append(ents[:e.Index-w.start.Index-1], e)

}

w.enti = e.Index

Figure TOB-ETCD-006.1: A snippet of the ReadAll function in the entryType case, where the
ents slice is indexed with a large integer, leading to a panic (wal/wal.go#L423-1438).

A WAL entry that caused the following runtime panic was produced. Notice how the
e.index and w.start. Index satisfy the “greater than” check. However, when
13038096702221461993 - © - 1 evaluates to an upper bound of 13038096702221461992,
the slice fails on the premise of being too large.

2020-01-28 16:55:53.987278 I | wal: testlo

2020-01-28 16:55:54.032191 I | wal: e.Index: 13038096702221461993

2020-01-28 16:55:54.032248 I | wal: w.start.Index: @

panic: runtime error: slice bounds out of range [:13038096702221461992] with capacity ©

goroutine 1 [running]:

go.etcd.io/etcd/wal. (*WAL).ReadAll(Oxc0000de2a0, Oxc0O0O00ae688, Ox4, Ox8, Ox0, Ox0, 0x0, 0x0,
0x0, 0x0, ...)

/.../go.etcd.io/etcd/wal/wal.go:439 +0x1121

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 22

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/wal/wal.go#L423-L438

go.etcd.io/etcd/wal.FuzzRecover()
/.../go.etcd.i/etcd/wal/wal_fuzzer.go:592 +0x77e
go.etcd.io/etcd/wal.FuzzStep()
/.../go.etcd.io/etcd/wal/wal_fuzzer.go:1067 +0x48d
go.etcd.io/etcd/wal.FuzzWal()
/.../go.etcd.io/etcd/wal/wal_fuzzer.go:1090 +0x8b

main.main()

/.../go.etcd.io/etcd/fuzz.go:10 +0x20
Figure TOB-ETCD-006.2: Trace of the triggered panic.

Exploit Scenario

A RAFT participant receives a corrupted WAL from a compromised leader after an election.
The participant subsequently panics when the metadata is being parsed, which causes the
participant to crash. A participant could also panic on reading RAFT state from a WAL with
this error.

Recommendation

Short term, ensure proper size checks on the final e. Index-w.start.Index-1in each WAL
entry, and gracefully error if the size is too large for the given slice. This will prevent a hard
crash if an invalid WAL entry is encountered.

Long term, restructure WALs to be limited by entry index and size instead of size alone. This
will help prevent mutated entries from inducing a panic when parsing the WAL.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 23

7. Alarge slice causes panicin decodeRecord method

Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-ETCD-007
Target: wal/decoder.go

Description

The size of a record is stored in the length field of a WAL file, and no additional validation is
done on this data. Therefore, it is possible to forge an extremely large frame size—so large,
in fact, that the data := make([]byte, recBytes+padBytes) can unintentionally panic at
the expense of any RAFT participant trying to decode the WAL.

func (d *decoder) decodeRecord(rec *walpb.Record) error {
if len(d.brs) == 0 {
return io.EOF

}

1, err := readInt64(d.brs[0])
if err == i0.EOF || (err == nil && 1 == 0) {
// hit end of file or preallocated space
d.brs = d.brs[1:]
if len(d.brs) == 0 {
return io.EOF
¥

d.lastValidoff = @
return d.decodeRecord(rec)

b

if err I= nil {
return err

}

recBytes, padBytes := decodeFrameSize(1l)

data := make([]byte, recBytes+padBytes)

Figure TOB-ETCD-007.1: A snippet of the decodeRecord method with vulnerable make call
(wal/decoder.go#L62-183).

A WAL file that was generated during fuzzing produced the following panic. Notice the
runtime error that was caused by attempting to create a [Jbyte slice the size of recBytes
+ padBytes after decoding the frame size from the length data.

panic: runtime error: makeslice: len out of range

goroutine 1 [running]:

go.etcd.io/etcd/wal. (*decoder).decodeRecord(0xc00006a040, 0xc000103d18,
0xCc000103c30, 0x4la2a7)

/.../go.etcd.io/etcd/wal/decoder.go:83 +0x2le

go.etcd.io/etcd/wal. (*decoder).decode(0xc00006a040, OxcP00103d18, Ox0, 0x0)

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 24

https://github.com/trailofbits/audit-etcd/blob/499efa42f93b9a09b50365467bc953966f31f427/src/etcd-3.4.3/wal/decoder.go#L83

/.../go.etcd.io/etcd/wal/decoder.go:59 +0xa7

go.etcd.io/etcd/wal. (*WAL).ReadAll(Oxc000154000, Ox0, Ox0, Ox0, Ox0, 0x0,
Ox0, Ox0, 0x0, 0x0, ...)
/.../go.etcd.io/etcd/wal/wal.go:431 +0x14b

go.etcd.io/etcd/wal.CovFuzz(0x0, ©x0, 0x0, 0Ox1)
/.../go.etcd.io/etcd/wal/wal_covfuzzer.go:31 +0x171
main.main()

/.../go.etcd.io/etcd/fuzz.go:31 +0xd6
Process finished with exit code 2

Figure TOB-ETCD-007.2: Trace of the panic being triggered.

Exploit Scenario

The exact same exploit scenario from TOB-ETCD-006 can be applied to this vulnerability.
However, in this case, any method trying to decode WAL data is vulnerable to this panic.
The issue could arise from a malicious leader forging the size in their own WAL record.

Recommendation

Short term, provide a size check on the decodeRecord method and gracefully exit if the
frame size is larger than the maximum slice length. This will prevent crashing due to
out-of-bounds indexing of the allocated array if the WAL entry has been mutated.

Long term, consider building a method to identify expected ranges for valid values into the

format for the WAL. This will assist additional validations of the WAL file, allowing the
detection of corruption or manipulation.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 25

8. No minimum password length

Severity: Medium Difficulty: Low
Type: Access Control Finding ID: TOB-ETCD-008
Target: auth/store.go, UserAdd function

Description

etcd does not perform any password length validation, which allows for very short
passwords, such as those with a length of one. This may allow an attacker to guess or
brute-force users’ passwords with little computational effort.

Exploit Scenario
Alice sets her etcd user password to four characters. Eve, who can connect to the etcd
cluster, brute-forces Alice’s password and successfully authenticates.

Recommendation

Short term, consider improving the password requirements to a higher minimum character
amount. This will make it harder for an attacker to brute-force authentication of an etcd
user.

Long term, consider adopting a specific standard for password requirements, such as NIST
SP 800-204, and enforce it across the codebase.

References
e NIST SP 800-204

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 26

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

9. Inaccurate logging of authentication attempts for users with CN-based
auth only

Severity: Low Difficulty: Undetermined
Type: Logging Finding ID: TOB-ETCD-009
Target: etcdserver/v3_server.go

Description

etcd users who have no password can authenticate only through a client certificate. When
such users try to authenticate into etcd using the Authenticate endpoint (Figure
TOB-ETCD-009.2), the errors in Figure TOB-ETCD-009.1 are logged.

2020-02-01 17:35:04.368034 E | etcdserver: invalid authentication request to user root was
issued
2020-02-01 17:38:09.967097 N | auth: authentication failed, invalid password for user root

Figure TOB-ETCD-009.1: Errors logged when trying to authenticate as a user with no password.

These logs provide insufficient information regarding why the authentication failed, and
may be misleading when auditing etcd logs.

func (s *EtcdServer) Authenticate(ctx context.Context, r *pb.AuthenticateRequest)
(*pb.AuthenticateResponse, error) {
/7 (..0)
checkedRevision, err := s.AuthStore().CheckPassword(r.Name, r.Password)
if err = nil {
if err != auth.ErrAuthNotEnabled {
if 1g != nil {
lg.Warn(
"invalid authentication was requested”,
zap.String("user"”, r.Name),
zap.Error(err),

} else {
plog.Errorf("invalid authentication request to user %s was issued", r.Name)

}

Figure TOB-ETCD-009.2: The Authenticate endpoint function
(etcdserver/v3 server.go#L410-1421).

A user with no password can be created with the etcdctl user add <user>
--no-password command and the authentication request can be performed with the
command in Figure TOB-ETCD-009.3.

curl -X POST http://127.0.0.1:2379/v3/auth/authenticate --data '{"name":
"<username>", "password": ""}'

Figure TOB-ETCD-009.3: a curl command of authentication without a password.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 27

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdserver/v3_server.go#L410-L421

Note that this requires authentication to be enabled, which can be done with the etcdctl
auth enable command.

Recommendation

Short term, ensure an appropriate error is logged when an authentication attempt has
failed due to a client certificate authentication. Ideally, each authentication method should
generate unique log entries to allow operators to differentiate interactions.

Long term, validate whether all significant program paths are logged distinguishably and

documented appropriately. This will help ensure proper logging, and detections can be
built on each authentication method.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 28

10. The “Total number of db keys compacted” metricis never changed

Severity: Informational Difficulty: Undetermined
Type: Logging Finding ID: TOB-ETCD-010
Target: mvcc/kvstore_compaction.go, mvcc/metrics.go

Description

The dbCompactionKeysCounter (Figure TOB-ETCD-010.1) never changes. This counter is
supposed to be increased by the keyCompactions value in the scheduleCompaction
function (Figure TOB-ETCD-010.2) but the keyCompactions value never changes in that
function. This can be misleading when debugging or auditing etcd.

dbCompactionKeysCounter = prometheus.NewCounter(
prometheus.CounterOpts{
Namespace: "etcd_debugging”,
Subsystem: "mvcc",
Name: "db_compaction_keys_ total",
Help: "Total number of db keys compacted."”,

}

Figure TOB-ETCD-010.1: The dbCompactionKeysCounter counter
(mvcc/metrics.go#L170-1L176).

func (s *store) scheduleCompaction(compactMainRev int64, keep map[revision]struct{}) bool {
totalStart := time.Now()
/7 ()
keyCompactions := ©
defer func() { dbCompactionKeysCounter.Add(float64(keyCompactions)) }()

Figure TOB-ETCD-010.2: The scheduleCompaction function
(mvcc/kvstore _compaction.go#lL27-128).

Recommendation

Short term, ensure the dbCompactionKeysCounter variable properly represents the etcd
operations that have occurred. This will help ensure the users can properly track and alert
on metrics.

Long term, expand unit tests to include testing metrics endpoints to ensure changes to the

metrics endpoints still produce the expected behavior. This will prevent future introduction
of breaking changes and ensure the stability of loggable metrics.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 29

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/mvcc/metrics.go#L170-L176
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/mvcc/kvstore_compaction.go#L27-L28

11. Auto compaction retention can be set to negative value causing a
compaction loop ora crash

Severity: Low Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-ETCD-011
Target: Automatic history compaction

Description

The parseCompactionRetention function (Figure TOB-ETCD-011.1) parses a retention
string with strconv.Atoi function and casts the result to int64 to create a time.Duration
instance. This scheme allows the value to be negative and causes the node to execute the
history compaction in a loop, taking more CPU than usual and spamming logs.

func parseCompactionRetention(mode, retention string) (ret time.Duration, err error) {
h, err := strconv.Atoi(retention)
if err == nil {
switch mode {
case CompactorModeRevision:
ret = time.Duration(int64(h))
case CompactorModePeriodic:
ret = time.Duration(int64(h)) * time.Hour

Figure TOB-ETCD-011.1: The parseCompactionRetention function
(embed/etcd.go#1812-1819).

See the auto-compaction example in Figure TOB-ETCD-011.2.

$./bin/etcd --auto-compaction-retention=-1
(...) - etcd initialisation logs

2020-02-02 00:23:57.320788 N | compactor: Starting auto-compaction at revision 1 (retention:
-1homes)

2020-02-02 00:23:57.329580 N | compactor: Finished auto-compaction at revision 1

2020-02-02 ©0:23:57.329790 N | compactor: Starting auto-compaction at revision 1 (retention:
-1homes)

2020-02-02 00:23:57.338759 N | compactor: Finished auto-compaction at revision 1

Figure TOB-ETCD-011.2: Launching etcd with the - -auto-compaction-retention=-1 flag
makes its compaction thread execute the auto-compaction all the time.

Additionally, on MacOS/Darwin when a zap logger is set and a negative auto compaction
retention value is passed, the etcd crashes as shown in Figure TOB-ETCD-011.3.

$./bin/etcd --auto-compaction-retention=-1 --logger=zap
(...) - etcd initialisation logs
{"level":"info","ts":"2020-02-02T700:29:40.797+0100", "caller":"v3compactor/periodic.go:135","

msg":"starting auto periodic compaction"”,"revision":1,"compact-period":"-1homos"}
panic: runtime error: invalid memory address or nil pointer dereference

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 30

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/embed/etcd.go#L812-L819

[signal SIGSEGV: segmentation violation code=0x1 addr=0x20 pc=0x1825115]
goroutine 193 [running]:

go.etcd.io/etcd/etcdserver. (*EtcdServer).processInternalRaftRequestOnce(0xc0002bc580,
0x1e70d00, OxCcP001622cO, OxcPOPOOCP40, Ox0, Ox0, 0x0, 0x0, 0x0, 0x0, ...)
/Users/dc/tob/projects/audit-etcd/src/etcd-3.4.3/etcdserver/v3_server.go:646 +0x1c5

go.etcd.io/etcd/etcdserver. (*EtcdServer).Compact (0xc0002bc580, ©Ox1e70d00, ©xc0001622cO,
0xC0000eed70, Ox0, Ox0, 0x0)
/Users/dc/tob/projects/audit-etcd/src/etcd-3.4.3/etcdserver/v3_server.go:208 +0xfl

go.etcd.io/etcd/etcdserver/api/v3compactor. (*Periodic).Run.funcl(0xc0001l6e3f0, Oxb,
oxffffffac2e53f000, Oxfffffcb9cf476000)
/Users/dc/tob/projects/audit-etcd/src/etcd-3.4.3/etcdserver/api/v3compactor/periodic.go:143
+0x53c¢

created by go.etcd.io/etcd/etcdserver/api/v3compactor. (*Periodic).Run
/Users/dc/tob/projects/audit-etcd/src/etcd-3.4.3/etcdserver/api/v3compactor/periodic.go:103
+0xbo

Figure TOB-ETCD-011.3: Launching etcd with the - -auto-compaction-retention=-1
--logger=zap flags on MacOS makes it crash.

Exploitation Scenario

An attacker who can control the auto compaction retention setting sets it to -1 so it keeps
compacting etcd forever and saving it to logs, filling all disk space and rendering etcd
unable to process properly.

Recommendation
Short term, do not accept a negative value of automatic compaction retention. Data
validation should ensure the provided values are within the expected range.

Long term, account for negative values provided as the auto compaction value. This should
also be tested within the corresponding TestAutoCompactionModeParse test.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 31

12. User credentials are stored in WAL logs in plaintext

Severity: Low Difficulty: High

Type: Data Exposure Finding ID: TOB-ETCD-012
Target: WAL

Description

User credentials (login and password) are stored in WAL entries on each user
authentication. By default, the WAL files have correct permissions, and are only read-write
for the user who launched etcd, but if the path to the WAL log file has been created by an
attacker, they could potentially read files containing the sensitive information stored by
etcd. TOB-ETCD-003: Directories created via 0s.MkdirAll are not checked for permissions
further details the semantics behind this problem.

There is also an issue for this bug in etcd-io/etcd#10132.

Exploitation Scenario
An attacker is able to create directories on a server where etcd hasn't been launched yet.
They also create directories in the path where etcd will store its data. The attacker can then:

1. Create a fake etcd directory and file structure, and set file permissions so the etcd
server will be able to write there:

mkdir -p default.etcd/member/wal
touch default.etcd/member/wal/0000000000000000-0000000000000000.wal
chmod -R 777 default.etcd

2. Wait until etcd server is launched for the first time, authorization is enabled, and
some requests are made.

3. Read the default.etcd/member/wal/0000000000000000-0000000000000000 .wal
file which contains credentials.

This scenario exploits the TOB-ETCD-003 issue.

Recommendation

Short term, do not store credentials in the WAL. Instead, consider having a centralized
location for credentials that can be hardened appropriately, limiting the attack surface for
sensitive information.

Long term, check if permissions of the files used by etcd are within an acceptable range. If
the permissions are too broad, etcd should exit with an error for further investigation.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 32

https://github.com/etcd-io/etcd/issues/10132

13. Null pointer exception when calling wal.ReadAll after wal.Create

Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-ETCD-013
Target: wal/wal.go

Description

The wal.Create function creates a WAL object without setting a decoder field.
Subsequently, when a ReadAl1l method is called on the resulting WAL object which uses the
decoder field, a nil pointer dereference is triggered. Since the wal.Create function’s
docstring suggests that a ReadAll operation can be used after creating the object, this
behavior is counter-intuitive and may introduce unexpected failures if such a flow is used in
the future. Both functions appear in Figure TOB-ETCD-013.1.

// Create creates a WAL ready for appending records. The given metadata is
// recorded at the head of each WAL file, and can be retrieved with ReadAll.
func Create(lg *zap.Logger, dirpath string, metadata []byte) (*WAL, error) { /* (...) */ }

func (w *WAL) ReadAll() (metadata []byte, state raftpb.HardState, ents []raftpb.Entry, err
error) {

w.mu.Lock()

defer w.mu.Unlock()

rec := &walpb.Record{}
decoder := w.decoder

var match bool
for err = decoder.decode(rec); err == nil; err = decoder.decode(rec) {

Figure TOB-ETCD-013.1: The Create (wal/wal.go#L95-1497) and ReadAll functions
(wal/wal.go#1423-1431).

When the following issue occurs, a nil dereference triggers the panic. This issue was found
during the unit test fuzzing referenced in the Appendix C. Fuzzing results.

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x83f129]

goroutine 1 [running]:
sync. (*Mutex).Lock(...)
/usr/local/go/src/sync/mutex.go:74
go.etcd.io/etcd/wal. (*decoder).decode(0x0, 0xc00O3b3d50, Ox0, Ox0)

/home/sai/github/ToB/assurance/audits/go.etcd.io/etcd/wal/decoder.go:57
+0x59

go.etcd.io/etcd/wal. (*WAL).ReadAll(Oxco000de2a0, Ox0, Ox0, Ox0, Ox0, 0x0,
0x0, Ox0, 0x0, 0x0, ...)

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 33

https://github.com/trailofbits/audit-etcd/blob/6f0ae9a4ce1bf2ec7d2a7cbda4761f579abd6f00/src/etcd-3.4.3/wal/wal.go#L95-L97
https://github.com/trailofbits/audit-etcd/blob/6f0ae9a4ce1bf2ec7d2a7cbda4761f579abd6f00/src/etcd-3.4.3/wal/wal.go#L423-L431

/home/sai/github/ToB/assurance/audits/go.etcd.io/etcd/wal/wal.go:431 +0x151
go.etcd.io/etcd/wal.GenCorpus()

/home/sai/github/ToB/assurance/audits/go.etcd.io/etcd/wal/wal gen.go:62

+0x3fe

main.main()
/home/sai/github/ToB/assurance/audits/go.etcd.io/etcd/fuzz.go:20

+0x20

Process finished with exit code 2
Figure TOB-ETCD-013.2: Nil dereference panic traceback.

Exploitation Scenario
A developer implements a new function or unit-test assuming the API supports the
subsequent creation and reading of records. This causes unexpected failures.

Recommendation

Short term, initialize a decoder in the wal.Create function, so the WAL may decode
information in the wal.ReadAll function. This will prevent users from encountering an
error due to an uninitialized decoder.

Long term, check if the WAL has its decoder field set when it is going to be used, or refactor
the API to have a single function that creates a fully initialized WAL object.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 34

14. Submitting a -1 for cluster node size results in an index out-of-bound
panic during service discovery

Severity: Low Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-ETCD-014
Target: Service discovery

Description
When an etcd instance attempts to perform service discovery, if a cluster size of -1 is
provided, the etcd instance will panic without recovery.

This panic occurs because the etcd instance retrieves a value from a remote key-value
store (e.g. an existing etcd instance or cluster) where the value is stored as a string. To
convert the string to an integer, strconv.Atoi is used (Figure TOB-ETCD-014.1), which
returns an int. Because an int can be negative, a lack of validation results in this value
indexing a slice. This in turn creates an index out-of-bounds panic (Figure TOB-ETCD-014.2)
until other etcd instances are discoverable (Figure TOB-ETCD-014.3).

size, err := strconv.Atoi(resp.Node.Value)
if err I= nil {
return nil, @, @, ErrBadSizeKey

}

Figure TOB-ETCD-014.1: The use of strconv.Atoi without validating the parsed integer beyond
whether an error occurred during conversion
(etcdserver/api/v2discovery/discovery.go#L250-1253).

panic: runtime error: slice bounds out of range [:-1]

goroutine 1 [running]:

go.etcd.io/etcd/etcdserver/api/v2discovery. (*discovery).waitNodes (0xc000294

6e0, 0xc000010210, Ox1, oxl, Oxffffffffffffffff, Oxb, Ox0, 0x0, Ox0, 0x0,
-)

/.../etcdserver/api/v2discovery/discovery.go:341 +0x1bf6
go.etcd.io/etcd/etcdserver/api/v2discovery. (*discovery).joinCluster(0xc0002
946e0, 0xCc0002cd040, 0x1ld, 0x0, O0x0, Ox0, 0x0)

/.../etcdserver/api/v2discovery/discovery.go:180 +0x2f6
go.etcd.io/etcd/etcdserver/api/v2discovery.JoinCluster(0x0, Ox7ffeefbff5de,
Ox54, 0x0, 0x0, 0x561d867318552b53, 0Oxc0002cdo40, ©Oxld, ©x0, 0x0, ...)

/.../etcdserver/api/v2discovery/discovery.go:68 +0x16d
go.etcd.io/etcd/etcdserver.NewServer(0x20a4b58, 0x7, Ox7ffeefbff5de, 0x54,
Ox0, 0x0, OxcPVVlcad80, Ox1l, Ox1l, OxcPOOlcaas8d, ...)

/.../etcdserver/server.go:389 +0x4148
go.etcd.io/etcd/embed.StartEtcd(Oxc0001a5080, OxcOOO1a5600, Ox0, Ox0)

/.../embed/etcd.go:211 +0x1175
go.etcd.io/etcd/etcdmain.startEtcd(0xc0001a5080, 0x0, Ox0, Ox0, 0Ox0)

/.../etcdmain/etcd.go:302 +0x7a

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 35

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdserver/api/v2discovery/discovery.go#L250-L253

go.etcd.io/etcd/etcdmain.startEtcdOrProxyv2()
/.../etcdmain/etcd.go:160 +0x3411
go.etcd.io/etcd/etcdmain.Main()
/.../etcdmain/main.go:46 +0x43b
main.main()
/.../main.go:28 +0x20

Figure TOB-ETCD-014.2: The traceback for the out-of-bounds index panic.

func (d *discovery) waitNodes(nodes []*client.Node, size int, index uint64) ([]*client.Node,
error) {

if len(nodes) > size {
nodes = nodes[:size]
}

Figure TOB-ETCD-014.3: The negative size is used to index this array, resulting in an index
out-of-bounds panic (etcdserver/api/v2discovery/discovery.go#L339-1342).

Exploitation Scenario

An attacker identifies an etcd cluster and discovery URL used for service discovery, then
substitutes the size value used to bootstrap with a -1. As a result, all instances attempting
to discover other instances with that URL panic.

Recommendation
Short term, ensure proper validation for all values retrieved and parsed from outside

sources. This will help reduce the effect of a third-party system compromise on the
integrity of etcd.

Long term, consider consolidating validation routines into a specific set of helper libraries
used across the codebase. Avoid using strconv.Atoi without validating the parsed value.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 36

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdserver/api/v2discovery/discovery.go#L339-L342

15. Insecure ciphers are allowed by default

Severity: Low Difficulty: Undetermined
Type: Cryptography Finding ID: TOB-ETCD-015
Target: pkg/tlsutil/cipher_suites.go

Description

The TLS ciphers list supported by etcd contains weak ciphers. This list, as the comment in
Figure TOB-ETCD-015.1 notes, was taken from Go cipher suites which disables some of the
ciphers by default (marked with the suiteDefaultOff flag) but those ciphers are not
disabled by etcd. This allows for insecure connections to etcd by default, exposing its users
to risk.

This issue has been reported to etcd as issue 10304.

// cipher suites implemented by Go

// https://github.com/golang/go/blob/dev.boringcrypto.gol.10/src/crypto/tls/cipher_suites.go

var cipherSuites = map[stringluintl6{
"TLS_RSA_WITH_RC4 128 SHA": t1s.TLS_RSA WITH_RC4_128 SHA,
"TLS_RSA_WITH_3DES_EDE_CBC_SHA": t1s.TLS_RSA WITH_3DES_EDE_CBC_SHA,
"TLS_RSA_WITH_AES_128 CBC_SHA": t1s.TLS_RSA WITH_AES_128 CBC_SHA,
"TLS_RSA WITH_AES_256_CBC_SHA": t1s.TLS_RSA_WITH_AES_256_CBC_SHA,
"TLS_RSA_WITH_AES_128 CBC_SHA256": t1s.TLS_RSA WITH_AES_128 CBC_SHA256,
"TLS_RSA_WITH_AES_128 GCM_SHA256": t1s.TLS_RSA WITH_AES_128 GCM_SHA256,
"TLS_RSA_WITH_AES_256_GCM_SHA384": t1s.TLS_RSA WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_ECDSA WITH_RC4 128 SHA": t1s.TLS_ECDHE_ECDSA WITH RC4 128 SHA,
"TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA": t1s.TLS_ECDHE_ECDSA WITH_AES_128 CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_ 256 _CBC_SHA": t1s.TLS_ECDHE_ECDSA WITH_AES 256 CBC_SHA,
"TLS_ECDHE_RSA_WITH_RC4_128 SHA": t1s.TLS_ECDHE_RSA_WITH_RC4_128 SHA,
"TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA": t1s.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA": t1s.TLS_ECDHE_RSA WITH_AES_128 CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_256 CBC_SHA": t1s.TLS_ECDHE_RSA_WITH_AES_256_ CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA256": tls.TLS_ECDHE_ECDSA WITH_AES_128_CBC_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128 GCM SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128 GCM SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128 GCM_SHA256": tls.TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256,
"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384": t1s.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384": tls.TLS_ECDHE_ECDSA WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305": t1ls.TLS_ECDHE_RSA_WITH_CHACHA20 POLY1305,
"TLS_ECDHE_ECDSA_WITH_CHACHA2@ POLY1305": tls.TLS_ECDHE_ECDSA WITH_CHACHA20_ POLY1305,

}
Figure TOB-ETCD-015.1: Ciphers supported by etcd
(pkg/tlsutil/cipher_suites.go#L19-144).
Recommendation

Short term, disable weak ciphers and require a special flag to enable them. By default, only
enable the modern ciphers as recommended by the Mozilla Security/Server side document.

Long term, determine the most popular ciphers used by etcd clients and consider removing
weak ciphers from support. This will help prevent clients from accidentally configuring an
insecure cipher when using etcd.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 37

https://github.com/golang/go/blob/dev.boringcrypto.go1.10/src/crypto/tls/cipher_suites.go#L88-L105
https://github.com/golang/go/blob/dev.boringcrypto.go1.10/src/crypto/tls/cipher_suites.go#L88-L105
https://github.com/etcd-io/etcd/issues/10304
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/pkg/tlsutil/cipher_suites.go#L19-L44
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

16. etcd is insecure by default

Severity: Informational Difficulty: Undetermined
Type: Cryptography Finding ID: TOB-ETCD-016
Target: etcd configuration

Description
When etcd is started without a specific configuration, it:

Serves traffic from unencrypted endpoint (http://127.0.0.1:2379/),
Uses simple tokens instead of cryptographically signed ones,
Allows for unauthenticated client access, and

Doesn't use TLS for peer-to-peer connections.

Although logs are produced when starting etcd under the first two conditions (Figure
TOB-ETCD-016.1), an inexperienced user might gain a false notion of the security of etcd
defaults and become prone to further configuring etcd insecurely.

auth: simple token is not cryptographically signed
embed: serving insecure client requests on 127.0.0.1:2379, this is strongly discouraged!

Figure TOB-ETCD-016.1: Warnings present when launching etcd with no configuration flags.
This issue has been reported to etcd as issue 9475.

Recommendation

Short term, deprecate the insecure defaults and promote more secure usage of etcd. For
example, list all insecure options at once during startup: describe the problems, suggest
fixes, and link to a documentation page that would show how to set up etcd securely.

Long term, make etcd secure by default, by requiring a minimally secure launch

configuration. To ease development, testing, and debugging, consider providing a simpler
but less secure configuration under --insecure.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 38

http://127.0.0.1:2379/
https://github.com/etcd-io/etcd/issues/9475

17. Use of TLS InsecureSkipVerify

Severity: Informational Difficulty: Undetermined
Type: Cryptography Finding ID: TOB-ETCD-017
Target: TLS Configuration

Description

Transport Layer Security (TLS) appears in multiple locations throughout the etcd codebase,
sometimes including InsecureSkipVerify to disable certificate checks. The lack of
authentication in some configurations presents opportunities for Monkey-In-The-Middle
interference.

// If the user wants to skip TLS verification then we should set

// the InsecureSkipVerify flag in tls configuration.

if scfg.insecureSkipVerify && cfg.TLS != nil {
cfg.TLS.InsecureSkipVerify = true

}

Figure TOB-ETCD-017.1: Use of InsecureSkipVerify
(etcdctl/ctlv3/command/global.go#lL234-1238).

Exploitation Scenario
TLSInsecureSkipVerify is enabled, allowing an attacker to perform Monkey-In-The-Middle
operations without the complications of TLS verification.

Recommendation
Short term, review configurations that use InsecureSkipVerify. Use insecure TLS

selectively and with caution. There are few purposes for which unverified certificates
should be supported.

Long term, avoid use of insecure TLS configurations altogether. Verify certificates in all
scenarios by default.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 39

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdctl/ctlv3/command/global.go#L234-L238

A.Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Error Reporting

Related to the reporting of error conditions in a secure fashion

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important
Medium Individual user’s information is at risk, exploitation would be bad for

client's reputation, moderate financial impact, possible legal
implications for client

© 2020 Trail of Bits

Linux Foundation Etcd Assessment | 40

High

Large numbers of users, very bad for client's reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits

Linux Foundation Etcd Assessment | 41

B. Code Quality Recommendations

This appendix details etcd issues that could be improved, but do not impact the project’s
security posture. These recommendations are proposed to prevent future errors from
occurring, and to improve the quality of future code contributions.

etcdctl/ctiv2/command/exec watch command.go#L81-L94
The after-index configuration variable is fetched as an integer and is then casted to
uint64. We recommend fetching it as Uint64.

index = c.Int("after-index")

/()
w := ki.Watcher(key, &client.WatcherOptions{AfterIndex: uint64(index), Recursive:
recursive})

clientv3/balancer/connectivity/connectivity.go#L71-L72

The updateVval in the loop shown below will have a value of math.MaxUint64 in its first
iteration due to the 2*uint64(@) - 1 calculation (which is 18446744073709551615). While
this is not a bug, we recommend changing the code so it won't overflow, making it less
confusing for readers.

for idx, state := range []Jconnectivity.State{oldState, newState} {
updateval := 2*uint64(idx) - 1 // -1 for oldState and +1 for new.

auth/simple token.go#L223-L229

There are places in the codebase where a result of strconv.Atoi integer parsing is casted
to uint64. One of the examples is auth/simple_token.go#L218-L235 shown below. Those
cases should use strconv.ParseUint instead to prevent accepting negative integers as
valid inputs.

index, err := strconv.Atoi(splitted[1])
if err I= nil {
return false

}

select {
case <-t.indexWaiter(uint64(index)):

etcdserver/api/rafthttp/http.go#L221-L222

The RAFT's snapshotHandler's ServeHTTP function sets a very large decodeLimit by using a
uint64(1 << 63) expression. We recommend using either 1) a proper limit, or 2) the
math.MaxUint64 constant (if the purpose is to set no limit).

// let snapshots be very large since they can exceed 512MB for large installations
m, err := dec.decodeLimit(uint64(1 << 63))

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 42

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdctl/ctlv2/command/exec_watch_command.go#L81-L94
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/clientv3/balancer/connectivity/connectivity.go#L71-L72
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/auth/simple_token.go#L223-L229
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/etcdserver/api/rafthttp/http.go#L222

embed/config.go#L136-L140 and embed/config.go#L594-L599

The cfg.TickMs and cfg.ElectionMs are of unsigned integer types, but they are checked
for being less than zero. The comparisons below should be changed to check only for their
value being “equal to zero.”

// TickMs is the number of milliseconds between heartbeat ticks.

// TODO: decouple tickMs and heartbeat tick (current heartbeat tick = 1).
// make ticks a cluster wide configuration.

TickMs uint “json:"heartbeat-interval™’

ElectionMs uint “json:"election-timeout""

// Below are lines 594-599

if cfg.TickMs <= 0 {
return fmt.Errorf("--heartbeat-interval must be >0 (set to %dms)", cfg.TickMs)
}
if cfg.ElectionMs <= 0 {
return fmt.Errorf("--election-timeout must be >0 (set to %dms)", cfg.ElectionMs)

}

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 43

https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/embed/config.go#L136-L140
https://github.com/etcd-io/etcd/blob/3cf2f69b5738fb702ba1a935590f36b52b18979b/embed/config.go#L594-L599

C. Fuzzing results

Trail of Bits performed fuzz testing of the etcd WAL package using both google/gofuzz and
dvyukov/go-fuzz. Several potential issues were identified in the etcd WAL package,
ranging from a decoder panic (TOB-ETCD-007) to a null pointer exception in a WAL struct
(TOB-ETCD-013).

etcd wal package

To test the WAL package, a corpus of valid WAL files were randomly generated with a script
that uses google/gofuzz (see Figure C.3). This corpus was then used with
dvyukov/go-fuzz to perform instrumented coverage-guided fuzzing. The results show the
presence of potential edge-cases when the WAL decoder utilizes the size information it
parses (TOB-ETCD-007) and a null pointer exception (TOB-ETCD-013).

func CovFuzz(data []byte) int{
err := ioutil.WriteFile(testPath, data, ©777)
defer os.Remove(testPath)
if err I= nil {
plog.Errorf("could not write test file because: %v", err)
return ©

}

var err error

var w *WAL

if w, err = Open(zap.NewExample(), kPathToCrash , walpb.Snapshot{}); err != nil {
plog.Error(err)

return ©

}

metadata, _, _, err := w.ReadAll()

if err I= nil {
plog.Fatalf("could not read file meta data and collect entries")
return 1

}

if !bytes.Equal(metadata, []byte(metadataStr)) {
plog.Fatalf("metadata = %s, want %s", metadata, metadataStr)
return 1

}

return 0

}

Figure C.1: Fuzzing test harness used with auto-generated corpus. The fuzzing was performed
with a single worker because the harness writes to and deletes a file.

Furthermore, many unit tests were translated to fuzz tests with google/gofuzz to provide
an adequate amount of APl coverage. The result of translating unit-tests produced a

runtime panic in the wal.ReadAll function, detailed in TOB-ETCD-006. During fuzzing, the
complex structure of snapshots, records, hardstates, and entries were taken into account.

func FuzzWriteRecord() {

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 44

https://github.com/google/gofuzz
https://github.com/dvyukov/go-fuzz

b := &walpb.Record{}
encd := walpb.Record{}
buf := new(bytes.Buffer)
e := newEncoder(buf, 0, 0)
complexfuzzer.Fuzz(&encd)
e.encode(&encd)
e.flush()
decoder := newDecoder(ioutil.NopCloser(buf))
err := decoder.decode(b)
if err I= nil {
plog.Errorf("err = %v, want nil", err)
}
if b.Type != encd.Type {
plog.Errorf("type = %d, want %d", b.Type, encd.Type)
}

if lreflect.DeepEqual(b.Data, encd.Data) {
plog.Errorf("data = %v, want %v", b.Data, encd.Data)
}

}

Figure C.2: Example of unit-test converted to fuzz test. TestWriteRecord is converted to

FuzzWriteRecord.

Fuzzing triggered panics in the MustUnmarshal function in both fuzzing approaches, but
this was not reported as a finding because it is intended behavior.

func GenEntries(w *WAL, size int) {
state := raftpb.HardState{}
if size < 0 {
size *= -1

plog.Info(size)

entries := make([]raftpb.Entry, size)

for i:=0; i<size; i++ {
complexfuzzer.Fuzz(&entries[i])
entries[i].Index = uint64(i)

}

state.Commit = uint64(size-1)

if err := w.Save(state, entries); err != nil {
plog.Fatal(err)

}

func GenCorpus() {
path, err := ioutil.TempDir(os.TempDir(), "corpus")
if err = nil {
plog.Fatal(err)
}

W, err := Create(zap.NewExample(), path, []byte(metadataStr))
if err I= nil {
plog.Fatal(err)

}
defer w.Close()

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 45

var size int
for i:=0; i<numTests; i++{
fuzzer.Fuzz(&size)
size %= numTests
GenEntries(w, size + 2)
err = Verify(zap.NewExample(), path, walpb.Snapshot{})
if err = nil {
plog.Errorf("expected a nil error, got %v", err)
continue
}
w.cut()

Figure C.3: Script used to generate WAL corpus.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 46

D. Gateway Finding Remediations

After discussions with the Etcd team, we determined that remediating several gateway
findings required either documentation improvements or future deprecation. Here are the
specific remediations we discussed with the Etcd team:

TOB-ETCD-001: Gateway TLS endpoint validation only confirms TCP reachability

It appears that the function ValidateSecureEndpoints is misleading in name and
intent. We believe appropriate documentation of this functionality plus deprecation
of this misleading functionality is an acceptable path forward. During our
discussions, the Etcd team noted that if the community wants endpoint TLS
validation functionality, it would not be added to the gateway, but instead to a
separate utility to avoid backwards incompatibility and reduce confusion.

TOB-ETCD-004: Gateway TLS authentication only applies to endpoints detected in
DNS SRV records

This finding is an extension of TOB-ETCD-001: Gateway TLS endpoint validation only
confirms TCP reachability, as the validation only applies to endpoints identified in
DNS SRV records, not the endpoints provided through command line flags. As a
result, there is an inconsistent application of validation.

We believe that because of the aforementioned misleading name and intent of the
ValidateSecureEndpoints function, this lack of validation does not present
significant concern, outside the lack of a TCP reachability check. Appropriate
documentation of the selective application of ValidateSecureEndpoints should be
sufficient to prevent users from believing the same validation is performed on
values provided through command line flags.

TOB-ETCD-005: TOCTOU of gateway endpoint authentication

As mentioned in TOB-ETCD-004: Gateway TLS authentication only applies to
endpoints detected in DNS SRV records, ValidateSecureEndpoints is only applied
to endpoints discovered through DNS SRV records. However, this validation only
applies on boot, and is not checked again before the gateway routes connections to
an endpoint.

After our discussions with the Etcd team, we believe that appropriate
documentation of this functionality will adequately prevent users from being misled
as to the endpoint validation semantics.

© 2020 Trail of Bits Linux Foundation Etcd Assessment | 47

