Gofer

A scalable stateless proxy for DBI

Goter, logically

® Gotfer 1s
— A scalable stateless proxy architecture for DBI

— Transport independent
— Highly configuable on client and server side

— Efficient, in CPU time and minimal round-trips

— Well tested

— Scalable
— Cachable

— Simple and reliable

Goter, otructurally

® Goferis

A simple stateless request/response protocol

A DBI proxy driver: DBD::Gofer

A request executor module

A set of pluggable transport modules

An extensible client configuration mechanism

® Development sponsored by Shopzilla.com

Gofer Protocol

® DBI::Gofer::Request & DBI::Gofer::Response
® Simple blessed hashes

— Request contains all required information to
connect and execute the requested methods.

— Response contains results from methods calls,
including result sets (rows of data).

® Serialized and transported by transport
modules like DBI::Gofer:: Transport::http

Using DBD::Gofer

® Via DSN
- By adding a prefix
Sdsn = “dbi:Driver:dbname”;

$dsn = “dbi:Gofer:transport=foo;dsn=%dsn”;

® Via DBI AUTOPROXY environment variable

— Automatically applies to all DBI connect calls
S export DBI AUTOPROXY=*“dbi:Gofer:transport=foo”;

- NO code changes required!

Gofer Transports

® DBI::Gofer:: Transport::null
— The ‘null’ transport.

— Senializes request object,
transports 1t nowhere,
then deserializes and passes 1t to
DBI::Gofer::Execute to execute

— Sernializes response object,
transports it nowhere,
then deseralizes and returns it to caller

— Very usetul for testing.
DBI AUTOPROXY=*“dbi:Gofer:transport=null”

Gofer Transports

® DBD::Gofer::Transport::stream (ssh)

— Can ssh to remote system to self-start server

ssh -xgq user@host.domain \
perl -MDBI::Gofer::Transport::stream \
-e run stdio hex

— Automatically reconnects 1f required
— ssh gives you security and optional compression

DBI AUTOPROXY='dbi:Gofer:transport=stream
surl=ssh:user@host.domain’

mailto:user@host.domain
mailto:user@host.domain

Gofer Transports

® DBD::Gofer::Transport::http

DBI

Sends requests as http POST requests

Server typically Apache mod_perl running
DBI::Gofer::Transport::http

Very flexible server-side configuration options
Can use https for security

Can use web techniques for scaling and high-

availability. Will support web caching.
AUTOPROXY='dbi:Gofer:transport=http

;uri=http://example.com/gofer’

Gofer Transports

® DBD::Gofer::Transport::gearman
— Distributes requests to a pool of workers

— Gearman a lightweight distributed job queue
http://www.danga.com/gearman

— Gearman 1s implemented by the same people who

wrote memcached, perlbal, mogileFFS, & DJabberd

DBI AUTOPROXY='dbi:Gofer:transport=gearman
surl=http://example.com/gofer’

http://www.danga.com/gearman
http://www.danga.com/gearman

Pooling via gearman ¢s http

* [haven’t compared them in use myself yet
+ Gearman may have lower latency

+ Gearman spreads load over multiple machines
without need for load-balancer

+ Gearman coalescing may be beneficial
+ Gearman async client may work well with POE
- Gearman clhients need to be told about servers

* More gearman info http://danga.com/words/

2007_04_linuxtest_nw/linuxtest.pdf (p61+)

10

http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf

DBD::Gofer

® A proxy driver
® Accumulates details of DBI method calls

® Delays forwarding request for as long as
possible

® Aims to be as ‘transparent’ as possible

® Policy mechanism allows fine-grained tuning
to trade transparency for speed

® cxecute array() is a single round-trip

11

DBD::Goter::Policy::*

® Three policies supplied: pedantic, classic, and
rush. Classic i1s the default.

® Policies are implemented as classes

® Currently 22 individual items within a policy
® Policy items can be dynamic methods

® Policy 1s selected via DSIN:

DBI AUTOPROXY=*“dbi:Gofer:transport=null
;policy=pedantic”

12

Round-trips per Policy

$dbh = DBI->connect cached
Sdbh->ping

Sdbh->quote

Ssth = $dbh->prepare
Ssth->execute
$sth->{NUM OF FIELDS}
Ssth->fetchrow array

Sdbh->tables

pedantic classic

connect()

v

SRR

v

if not
default

v

rush

if not
default

v

cached
after first

13

Goter Caveats

® State-less-ness has implications

No transactions. AutoCommit only.

Can’t alter Sdbh attributes after connect

Can't use temp tables, locks, and other per-connection
persistent state, except via stored procedures

Code using last insert_ id needs a (simple) change

See the docs for a few other very obscure caveats

14

An Example

Using Gofer for Connection Pooling

15

The Problem

aaaaaaaa

eeeee

/

1 overloaded databas

A Solution

A database proxy’ that
pache] does connection pooling
- e
/ 0 @@@ I~ Q
= N
e N
N\
=),
erver 00 O
\ TN
Holds a few (5 e o e T2
connections open Sulan o

—

\

Uses them to service VBl requests

Workers

Repeat for all servers

17

An Implementation

Standard apache+mod_perl

Apache] /

DBI + DBD: :* @@QQQ
e -
% NS

/ OJ %%s

N . Y2,
sl L L@
NS = A

DBI: :Gofer: :Execute and

—

DBI: :Gofer: :Transport: :http

Workers

\ modules implement stateless proxy

DBD: :Gofer with http transport

18

server.__,
with
40
workers

X

150
servers

[Load Balance and Cache

)L G, (

)L

Il ¢

)| G (

)

— High performance

[

= 6000 db

connections

HTTP Load Balancer and Cache

(

J —

load balancing
and fail-over

Far fewer db
&« connections

Database
Server

Caching results would

—

A New mid

dle tie

=

reduce db load even
further (not yet implemented)

19

Error Handling

® DBD::Gofer can automatically retry on failure
DBI AUTOPROXY="dbi:Gofer:transport=null
;retry limit=3"
® Default behaviour is to retry if
Srequest->1is idemponent 1S true
— looks at SQL returns true for most SELECTs

® Default 1s retry_limit=0, so disabled

® You can define your own behaviour:

DBI->connect(..., {
go_retry hook => sub { ... },

})s

20

DBD::Proxy vs DBD::Gotfer

DBD::Proxy @ DBD::Gofer

Supports transactions 4 X (not yet)
Supports very large results 4 X (memory)
Automatic retry on error X 4

Large test suite X v
Minimal round-trips X 4
Modular & Pluggable classes X v
Tunable via Policies X 4
Scalable X 4
Connection pooling X 4

Can support client and web caches X X (not yet)

21

Gofter’s Future

® Caching for http transport

® Optional JSON seralization
® Caching in DBD::Gofer

® Make state-less-ness optional

® Patches welcome!

22

Future: http caching

® Potential big win
® DBD::Gofer needs to indicate cache-ability
— via appropriate http headers

® Server side needs to agree

— and res;

bond with appropriate http headers

® Caching then happens just like for web pages

— 1if there’s a web cache between client and server

® Patches welcome!

23

Future: JSSON

® Turns DBI into a web service!

— Service Oriented Architecture anyone?
® Accessible to anything

— that can talk JSON
® Clients could be JavaScript, Java, ...

— and various languages that begin with P or

® Patches welcome!

24

Future:

Client Caching

® DBD::Gofer could access a cache

— Use seralized request as key to cache

- If entry found then return that response

® Plug-able caching

— Would inc/

distributec

ude memcached to give a
' shared cache

® Patches wel

come!

25

Future: Transactions

® State-less-ness could be made optional
— If transport layer being used agrees
— For http that means KeepAlive

— Easiest to implement for stream / ssh

® Would be enabled by

AutoCommit => 0
$dbh->begin_work

® Patches welcome!

26

Quedstions?

