
Gofer
A scalable stateless proxy for DBI
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Gofer, logically

• Gofer is
- A scalable stateless proxy architecture for DBI

- Transport independent

- Highly configuable on client and server side

- Efficient, in CPU time and minimal round-trips

- Well tested

- Scalable

- Cachable

- Simple and reliable
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Gofer, structurally

• Gofer is
- A simple stateless request/response protocol

- A DBI proxy driver: DBD::Gofer

- A request executor module

- A set of pluggable transport modules

- An extensible client configuration mechanism

• Development sponsored by Shopzilla.com
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Gofer Protocol

• DBI::Gofer::Request & DBI::Gofer::Response

• Simple blessed hashes
- Request contains all required information to 

connect and execute the requested methods.

- Response contains results from methods calls, 
including result sets (rows of data).

• Serialized and transported by transport 
modules like DBI::Gofer::Transport::http
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Using DBD::Gofer

• Via DSN
- By adding a prefix 
$dsn = “dbi:Driver:dbname”;

$dsn = “dbi:Gofer:transport=foo;dsn=$dsn”;

• Via DBI_AUTOPROXY environment variable
- Automatically applies to all DBI connect calls
$ export DBI_AUTOPROXY=“dbi:Gofer:transport=foo”;

- No code changes required!
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Gofer Transports

• DBI::Gofer::Transport::null
- The ‘null’ transport.

- Serializes request object,
transports it nowhere,
then deserializes and passes it to 
DBI::Gofer::Execute to execute

- Serializes response object,
transports it nowhere,
then deserializes and returns it to caller

- Very useful for testing.

DBI_AUTOPROXY=“dbi:Gofer:transport=null”
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Gofer Transports

• DBD::Gofer::Transport::stream (ssh)
- Can ssh to remote system to self-start server

ssh -xq user@host.domain \
perl -MDBI::Gofer::Transport::stream \
-e run_stdio_hex

- Automatically reconnects if required

- ssh gives you security and optional compression

DBI_AUTOPROXY=’dbi:Gofer:transport=stream
;url=ssh:user@host.domain’
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Gofer Transports

• DBD::Gofer::Transport::http
- Sends requests as http POST requests

- Server typically Apache mod_perl running 
DBI::Gofer::Transport::http

- Very flexible server-side configuration options

- Can use https for security

- Can use web techniques for scaling and high-
availability. Will support web caching.

DBI_AUTOPROXY=’dbi:Gofer:transport=http
;url=http://example.com/gofer’
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Gofer Transports

• DBD::Gofer::Transport::gearman
- Distributes requests to a pool of workers

- Gearman a lightweight distributed job queue
http://www.danga.com/gearman

- Gearman is implemented by the same people who 
wrote memcached, perlbal, mogileFS, & DJabberd

DBI_AUTOPROXY=’dbi:Gofer:transport=gearman
;url=http://example.com/gofer’
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Pooling via gearman vs http

• I haven’t compared them in use myself yet

+ Gearman may have lower latency

+ Gearman spreads load over multiple machines 
without need for load-balancer

+ Gearman coalescing may be beneficial

+ Gearman async client may work well with POE

- Gearman clients need to be told about servers
• More gearman info http://danga.com/words/

2007_04_linuxfest_nw/linuxfest.pdf (p61+)
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DBD::Gofer

• A proxy driver

• Accumulates details of DBI method calls

• Delays forwarding request for as long as 
possible

• Aims to be as ‘transparent’ as possible

• Policy mechanism allows fine-grained tuning 
to trade transparency for speed

• execute_array() is a single round-trip
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DBD::Gofer::Policy::*

• Three policies supplied: pedantic, classic, and 
rush. Classic is the default.

• Policies are implemented as classes

• Currently 22 individual items within a policy

• Policy items can be dynamic methods

• Policy is selected via DSN:
DBI_AUTOPROXY=“dbi:Gofer:transport=null
;policy=pedantic”
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$dbh = DBI->connect_cached

$dbh->ping

$dbh->quote

$sth = $dbh->prepare

$sth->execute

$sth->{NUM_OF_FIELDS}

$sth->fetchrow_array

$dbh->tables

Round-trips per Policy
pedantic classic rush

connect() ✓

✓

✓ if not
default

if not
default

✓
✓ ✓ ✓

✓ ✓ cached 
after first
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Gofer Caveats

• State-less-ness has implications
- No transactions. AutoCommit only.

- Can’t alter $dbh attributes after connect

- Can’t use temp tables, locks, and other per-connection 
persistent state, except via stored procedures

- Code using last_insert_id needs a (simple) change

- See the docs for a few other very obscure caveats
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An Example
Using Gofer for Connection Pooling
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The Problem
Apache
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A Solution
Apache
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An Implementation
Apache
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Workers

Workers
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Error Handling

• DBD::Gofer can automatically retry on failure
DBI_AUTOPROXY=“dbi:Gofer:transport=null
;retry_limit=3”

• Default behaviour is to retry if
    $request->is_idemponent is true
- looks at SQL returns true for most SELECTs

• Default is retry_limit=0, so disabled

• You can define your own behaviour:
DBI->connect(..., {
    go_retry_hook => sub { ... },
});
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DBD::Proxy vs DBD::Gofer

DBD::Proxy DBD::Gofer

Supports transactions ✓ ✗(not yet)

Supports very large results ✓ ✗(memory)

Automatic retry on error ✗ ✓
Large test suite ✗ ✓

Minimal round-trips ✗ ✓
Modular & Pluggable classes ✗ ✓

Tunable via Policies ✗ ✓
Scalable ✗ ✓

Connection pooling ✗ ✓
Can support client and web caches ✗ ✗(not yet)
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Gofer’s Future

• Caching for http transport

• Optional JSON serialization

• Caching in DBD::Gofer

• Make state-less-ness optional

• Patches welcome!
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Future: http caching

• Potential big win

• DBD::Gofer needs to indicate cache-ability

- via appropriate http headers

• Server side needs to agree

- and respond with appropriate http headers

• Caching then happens just like for web pages
- if there’s a web cache between client and server

•Patches welcome!
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Future: JSON

• Turns DBI into a web service!

- Service Oriented Architecture anyone?

• Accessible to anything

- that can talk JSON

• Clients could be JavaScript, Java, ...

- and various languages that begin with P or 

•Patches welcome!
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Future: Client Caching

• DBD::Gofer could access a cache

- Use serialized request as key to cache

- If entry found then return that response

• Plug-able caching

- Would include memcached to give a 
distributed shared cache

•Patches welcome!
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Future: Transactions

•State-less-ness could be made optional

- If transport layer being used agrees

- For http that means KeepAlive

- Easiest to implement for stream / ssh

•Would be enabled by
AutoCommit => 0

$dbh->begin_work

•Patches welcome!
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Questions?
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