
Gofer
A scalable stateless proxy for DBI

1

Gofer, logically

• Gofer is
- A scalable stateless proxy architecture for DBI

- Transport independent

- Highly configuable on client and server side

- Efficient, in CPU time and minimal round-trips

- Well tested

- Scalable

- Cachable

- Simple and reliable

2

Gofer, structurally

• Gofer is
- A simple stateless request/response protocol

- A DBI proxy driver: DBD::Gofer

- A request executor module

- A set of pluggable transport modules

- An extensible client configuration mechanism

• Development sponsored by Shopzilla.com

3

Gofer Protocol

• DBI::Gofer::Request & DBI::Gofer::Response

• Simple blessed hashes
- Request contains all required information to

connect and execute the requested methods.

- Response contains results from methods calls,
including result sets (rows of data).

• Serialized and transported by transport
modules like DBI::Gofer::Transport::http

4

Using DBD::Gofer

• Via DSN
- By adding a prefix
$dsn = “dbi:Driver:dbname”;

$dsn = “dbi:Gofer:transport=foo;dsn=$dsn”;

• Via DBI_AUTOPROXY environment variable
- Automatically applies to all DBI connect calls
$ export DBI_AUTOPROXY=“dbi:Gofer:transport=foo”;

- No code changes required!

5

Gofer Transports

• DBI::Gofer::Transport::null
- The ‘null’ transport.

- Serializes request object,
transports it nowhere,
then deserializes and passes it to
DBI::Gofer::Execute to execute

- Serializes response object,
transports it nowhere,
then deserializes and returns it to caller

- Very useful for testing.

DBI_AUTOPROXY=“dbi:Gofer:transport=null”

6

Gofer Transports

• DBD::Gofer::Transport::stream (ssh)
- Can ssh to remote system to self-start server

ssh -xq user@host.domain \
perl -MDBI::Gofer::Transport::stream \
-e run_stdio_hex

- Automatically reconnects if required

- ssh gives you security and optional compression

DBI_AUTOPROXY=’dbi:Gofer:transport=stream
;url=ssh:user@host.domain’

7

mailto:user@host.domain
mailto:user@host.domain

Gofer Transports

• DBD::Gofer::Transport::http
- Sends requests as http POST requests

- Server typically Apache mod_perl running
DBI::Gofer::Transport::http

- Very flexible server-side configuration options

- Can use https for security

- Can use web techniques for scaling and high-
availability. Will support web caching.

DBI_AUTOPROXY=’dbi:Gofer:transport=http
;url=http://example.com/gofer’

8

Gofer Transports

• DBD::Gofer::Transport::gearman
- Distributes requests to a pool of workers

- Gearman a lightweight distributed job queue
http://www.danga.com/gearman

- Gearman is implemented by the same people who
wrote memcached, perlbal, mogileFS, & DJabberd

DBI_AUTOPROXY=’dbi:Gofer:transport=gearman
;url=http://example.com/gofer’

9

http://www.danga.com/gearman
http://www.danga.com/gearman

Pooling via gearman vs http

• I haven’t compared them in use myself yet

+ Gearman may have lower latency

+ Gearman spreads load over multiple machines
without need for load-balancer

+ Gearman coalescing may be beneficial

+ Gearman async client may work well with POE

- Gearman clients need to be told about servers
• More gearman info http://danga.com/words/

2007_04_linuxfest_nw/linuxfest.pdf (p61+)

10

http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf
http://danga.com/words/2007_04_linuxfest_nw/linuxfest.pdf

DBD::Gofer

• A proxy driver

• Accumulates details of DBI method calls

• Delays forwarding request for as long as
possible

• Aims to be as ‘transparent’ as possible

• Policy mechanism allows fine-grained tuning
to trade transparency for speed

• execute_array() is a single round-trip

11

DBD::Gofer::Policy::*

• Three policies supplied: pedantic, classic, and
rush. Classic is the default.

• Policies are implemented as classes

• Currently 22 individual items within a policy

• Policy items can be dynamic methods

• Policy is selected via DSN:
DBI_AUTOPROXY=“dbi:Gofer:transport=null
;policy=pedantic”

12

$dbh = DBI->connect_cached

$dbh->ping

$dbh->quote

$sth = $dbh->prepare

$sth->execute

$sth->{NUM_OF_FIELDS}

$sth->fetchrow_array

$dbh->tables

Round-trips per Policy
pedantic classic rush

connect() ✓

✓

✓ if not
default

if not
default

✓
✓ ✓ ✓

✓ ✓ cached
after first

13

Gofer Caveats

• State-less-ness has implications
- No transactions. AutoCommit only.

- Can’t alter $dbh attributes after connect

- Can’t use temp tables, locks, and other per-connection
persistent state, except via stored procedures

- Code using last_insert_id needs a (simple) change

- See the docs for a few other very obscure caveats

14

An Example
Using Gofer for Connection Pooling

15

The Problem
Apache

WorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Workers

Database
Server

40 worker processes per server

=
1 overloaded database

+
150 servers

-

16

A Solution
Apache

WorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Workers

Database
Server

A ‘database proxy’ that
does connection pooling

Holds a few
connections open

Uses them to service DBI requests
Repeat for all servers

-

17

An Implementation
Apache

WorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorkerWorker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Workers

!"#$%#&A
p
a

c
h
e Database

Server

Standard apache+mod_perl

DBI + DBD::*

DBD::Gofer with http transport

DBI::Gofer::Execute and
DBI::Gofer::Transport::http

modules implement stateless proxy

-

18

Workers

Workers

H
T

T
P

 L
o

a
d
 B

a
la

n
c
e
r

a
n
d
 C

a
c
h
e

A
p
a

c
h
e
 r

u
n
n
in

g
 D

B
I
G

o
fe

r
A

p
a
c
h
e
 r

u
n
n

in
g
 D

B
I
G

o
fe

r

Database
Server

Many
web
servers

Load Balance and Cache

Gofer
Servers

New middle tier

High performance
load balancing
and fail-over

Caching results would
reduce db load even
further (not yet implemented)

x
150

servers

server
with
40

workers

= 6000 db
connections

Far fewer db
connections

-

19

Error Handling

• DBD::Gofer can automatically retry on failure
DBI_AUTOPROXY=“dbi:Gofer:transport=null
;retry_limit=3”

• Default behaviour is to retry if
 $request->is_idemponent is true
- looks at SQL returns true for most SELECTs

• Default is retry_limit=0, so disabled

• You can define your own behaviour:
DBI->connect(..., {
 go_retry_hook => sub { ... },
});

20

DBD::Proxy vs DBD::Gofer

DBD::Proxy DBD::Gofer

Supports transactions ✓ ✗(not yet)

Supports very large results ✓ ✗(memory)

Automatic retry on error ✗ ✓
Large test suite ✗ ✓

Minimal round-trips ✗ ✓
Modular & Pluggable classes ✗ ✓

Tunable via Policies ✗ ✓
Scalable ✗ ✓

Connection pooling ✗ ✓
Can support client and web caches ✗ ✗(not yet)

21

Gofer’s Future

• Caching for http transport

• Optional JSON serialization

• Caching in DBD::Gofer

• Make state-less-ness optional

• Patches welcome!

22

Future: http caching

• Potential big win

• DBD::Gofer needs to indicate cache-ability

- via appropriate http headers

• Server side needs to agree

- and respond with appropriate http headers

• Caching then happens just like for web pages
- if there’s a web cache between client and server

•Patches welcome!

23

Future: JSON

• Turns DBI into a web service!

- Service Oriented Architecture anyone?

• Accessible to anything

- that can talk JSON

• Clients could be JavaScript, Java, ...

- and various languages that begin with P or

•Patches welcome!

24

Future: Client Caching

• DBD::Gofer could access a cache

- Use serialized request as key to cache

- If entry found then return that response

• Plug-able caching

- Would include memcached to give a
distributed shared cache

•Patches welcome!

25

Future: Transactions

•State-less-ness could be made optional

- If transport layer being used agrees

- For http that means KeepAlive

- Easiest to implement for stream / ssh

•Would be enabled by
AutoCommit => 0

$dbh->begin_work

•Patches welcome!

26

Questions?

27

